Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study investigates the effects of sway and roll excitations on sloshing liquid loads in a tank, using Ansys Fluent software. The model considered in the study is a 1:50 scaled membrane-type tank, based on a KC-1 membrane LNG tank designed by Korea Gas Corporation (KOGAS). The volume of fluid (VOF) method is used to track the free surface inside the tank, and the standard k-ε model is applied to express the turbulent flow of the liquid. To explore the motion of the tank under excitation, a user-defined function (UDF) and a dynamic mesh technique are employed to control the external forces exerted on the tank through its motion. The results, in the form of time series data on the sloshing pressures in the tank under pure sway, roll, and coupled sway-roll, are analysed, with specific ranges for the excitation amplitudes and frequencies. We show that variations in excitation frequency and amplitude significantly influence the sloshing loads. Sloshing loads are found to intensify when the excitation frequency matches the tank’s primary natural frequency, 1.0 ω'1. Furthermore, with coupled sway-roll excitations, the sloshing loads are weakened when the sway and roll are in-phase and are intensified when these are out-of-phase. Fast Fourier transform analysis provides insights into the frequency domain, showing that the dominant frequency is 0.88 Hz and it is approximately equal to the tank’s primary natural frequency, 1.0 ω'1.
Czasopismo
Rocznik
Tom
Strony
43--53
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Department of Chemical Engineering, Dankook University, Gyeonggi-do, 16890, South Korea
autor
- Department of Chemical Engineering, Dankook University, Gyeonggi-do, 16890, South Korea
autor
- School of Polymer Science and Engineering, Dankook University, Gyeonggi-do, 16890, South Korea
autor
- Department of Chemical Engineering, Dankook University, Gyeonggi-do, 16890, South Korea
Bibliografia
- 1. H. N. Abramson, “The dynamic behavior of liquids in moving containers, with applications to space vehicle technology,” Department of Mechanical Sciences, Southwest Research Institute, Washington, D.C., NASA-SP-106, 1966.
- 2. L. Hou, F. Li, and C. Wu, “A numerical study of liquid sloshing in a two-dimensional tank under external excitations,” Journal of Marine Science and Application, vol. 11, pp. 305-310, September 2012, doi: 10.1007/ s11804-012-1137-y.
- 3. B. F. Chen and C. H. Wu, “Effects of excitation angle and coupled heave-surge-sway motion on fluid sloshing in a three-dimensional tank,” Journal of Marine Science and Technology, vol. 16, pp. 22-50, December 2011, doi: 10.1007/ s00773-010-0111-0.
- 4. W. Wu, C. Zhen, J. Lu, J. Tu, J. Zhang, Y. Yang, K. Zhu, and J. Duan, “Experimental study on characteristic of sloshing impact load in elastic tank with low and partial filling under rolling coupled pitching,” International Journal of Naval Architecture and Ocean Engineering, vol. 12, pp. 178-183, 2020, doi: 10.1016/j.ijnaoe.2019.10.003.
- 5. B. Godderidge, S. R. Turnock, and M. Tan, “Evaluation of a rapid method for the simulation of sloshing in rectangular and octagonal containers at intermediate filling levels,” Computers & Fluids, vol. 57, pp. 1-24, March 2012, doi: 10.1016/j.compfluid.2011.09.010.
- 6. H. Jeong and W. Jaewoo Shim, “Calculation of boil-off gas (BOG) generation of KC-1 membrane LNG tank with high density rigid polyurethane foam by numerical analysis,” Polish Maritime Research, vol. 24, no. 1, pp. 100-114, April 2017, doi: 10.1515/pomr-2017-0012.
- 7. C. W. Hirt and B. D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries,” Journal of Computational Physics, vol. 39, no. 1, pp. 201-225, January 1981, doi: 10.1016/0021-9991(81)90145-5.
- 8. J. Haider, “Numerical modelling of evaporation and condensation phenomena,” Thesis, Institut für Raumfahrtsysteme, Universität Stuttgart, Lampoldshausen, 2013.
- 9. V. Singal, J. Bajaj, N. Awalgaonkar, and S. Tibdewal, “CFD analysis of a kerosene fuel tank to reduce liquid sloshing,” Procedia Engineering, vol. 69, pp. 1365-1371, 2014, doi: 10.1016/j.proeng.2014.03.130.
- 10. A. B. Desamala, V. Vijayan, A. Dasari, A. K. Dasmahapatra, and T. K. Mandal, “Prediction of oil-water flow patterns, radial distribution of volume fraction, pressure and velocity during separated flows in horizontal pipe,” Journal of Hydrodynamics, vol. 28, pp. 658-668, August 2016, doi: 10.1016/S1001-6058(16)60670-4.
- 11. M. L. Hosain, U. Sand, R. Bel Fdhila, “Numerical investigation of liquid sloshing in carrier ship fuel tanks,” IFAC-PapersOnLine, vol. 51, no. 2, pp. 583-588, 2018, doi: 10.1016/j.ifacol.2018.03.098.
- 12. S. H. Rhee, “Unstructured grid based Reynolds-averaged Navier-Stokes method for liquid tank sloshing,” Journal of Fluids Engineering, vol. 127, no. 3, pp. 572-582, 2005, doi: 10.1115/1.1906267.
- 13. O. M. Faltinsen and A. N. Timokha, “An adaptive multimodal approach to nonlinear sloshing in a rectangular tank,” Journal of Fluid Mechanics, vol. 432, pp. 167-200, April 2001, doi: 10.1017/S0022112000003311.
- 14. O. M. Faltinsen and A. N. Timokha, “Analytically approximate natural sloshing modes and frequencies in two-dimensional tanks,” European Journal of Mechanics – B/Fluids, vol. 47, pp. 176-187, September-October 2014, doi: 10.1016/j.euromechflu.2014.01.005.
- 15. N. Parthasarathty, H. Kim, Y. H. Choi, and Y. W. Lee, “A numerical study on sloshing impact loads in prismatic tanks under forced horizontal motion,” Journal of the Korean Society of Marine Engineering, vol. 41, no. 2, pp. 150-155, 2017, doi: 10.5916/jkosme.2017.41.2.150.
- 16. M. Hinatsu, “Experiments of two-phase flows for the joint research,” In: Proceedings of the SRI-TUHH miniWorkshop on Numerical Simulation of Two-Phase Flows, Ship Research Institute, Tokyo, Japan, pp. 12-19, 2001.
- 17. Y. H. Chen, Y. F. Yue, Y. Zhang, R. P. Li, and X. Xu, “Numerical investigation of vibration suppression for the combined device of non-Newtonian fluids coupled elastic baffle,” Journal of Applied Fluid Mechanics, vol. 16, no. 3, pp. 591-602, 2023, doi: 10.47176/jafm.16.03.1311.
- 18. H. Jin, Y. Liu, H. Li, and Q. Fu, “Numerical analysis of the flow field in a sloshing tank with a horizontal perforated plate,” Journal of Ocean University of China, vol. 16, no. 4, pp. 575-584, 2017, doi: 10.1007/s11802-017-3369-6.
- 19. O. Ubbink, “Numerical prediction of two fluid systems with sharp interfaces,” Thesis, Department of Mechanical Engineering, London University, January 1997.
- 20. B. Godderidge, S. Turnock, C. Earl, and M. Tan, “The effect of fluid compressibility on the simulation of sloshing impacts,” Ocean Engineering, vol. 36, no. 8, pp. 578-587, June 2009, doi: 10.1016/j.oceaneng.2009.02.004.
- 21. C. Hu and M. M. Kamra, “An unstructured mesh method for numerical simulation of violent sloshing flows,” Journal of Hydrodynamics, vol. 32, no. 2, pp. 259-266, April 2020, doi: 10.1007/s42241-020-0019-z.
- 22. B. Godderidge, S. Turnock, M. Tan, and C. Earl, “An investigation of multiphase CFD modelling of a lateral sloshing tank,” Computers & Fluids, vol. 38, no. 2, pp. 183193, February 2009, doi: 10.1016/j.compfluid.2007.11.007.
- 23. H. Akyildiz and E. Ünal, “Experimental investigation of pressure distribution on a rectangular tank due to the liquid sloshing,” Ocean Engineering, vol. 32, no. 11-12, pp. 15031516, 2005, doi: 10.1016/j.oceaneng.2004.11.006.
- 24. J. H. Jung, H. S. Yoon, and C. Y. Lee, “Effect of natural frequency modes on sloshing phenomenon in a rectangular tank,” International Journal of Naval Architecture and Ocean Engineering, vol. 7, no. 3, pp. 580-594, May 2015, doi: 10.1515/ijnaoe-2015-0041.
- 25. S. Wu and Y. Ju, “Numerical study of the boil-off gas (BOG) generation characteristics in a type C independent liquefied natural gas (LNG) tank under sloshing excitation,” Energy, vol. 223, no. 15, pp. 1-19, May 2021, doi: 10.1016/j. energy.2021.120001.
- 26. K. P. Thiagarajan, D. Rakshit, and N. Repalle, “The air-water sloshing problem: Fundamental analysis and parametric studies on excitation and fill levels,” Ocean Engineering, vol. 38, no. 2-3, pp. 498-508, 2011, doi: 10.1016/j.oceaneng.2010.11.019.
- 27. H. Kim, P. Nanjundan, J. Jeon, and Y. W. Lee, “Numerical estimation on applying air-trapping mechanism to suppress sloshing loads in a prismatic tank,” Journal of Mechanical Science and Technology, vol. 34, no. 7, pp. 2895-2902, 2020, doi: 10.1007/s12206-020-0621-6.
- 28. X. Yuan, Y. Su, and P. Xie, “Frequency characteristics of sloshing resonance in a three-dimensional shallowwater rectangular tank,” Journal of Marine Science and Engineering, vol. 10, no. 11, pp. 1792-1804, November 2022, doi: 10.3390/jmse10111792.
- 29. H. Kim, M. K. Dey, N. Oshima, and Y. W. Lee, “Numerical study on sloshing characteristics with Reynolds number variation in a rectangular tank,” Computation, vol. 6, no. 4, pp. 53-63, October 2018, doi: 10.3390/computation6040053.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04899235-1bac-450c-8cca-034f71172f87