PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Incomplete Pairwise Comparison Matrices and Weighting Methods

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A special class of preferences, given by a directed acyclic graph, is considered. They are represented by incomplete pairwise comparison matrices as only partial information is available: for some pairs no comparison is given in the graph. A weighting method satisfies the linear order preservation property if it always results in a ranking such that an alternative directly preferred to another does not have a lower rank. We study whether two procedures, the Eigenvector Method and the Logarithmic Least Squares Method meet this axiom. Both weighting methods break linear order preservation, moreover, the ranking according to the Eigenvector Method depends on the incomplete pairwise comparison representation chosen.
Wydawca
Rocznik
Strony
309--320
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
autor
  • Department of Operations Research and Actuarial Sciences, Corvinus University of Budapest (BCE)
  • MTA-BCE “Lendület” Strategic Interactions Research Group, Budapest, Hungary
autor
  • Informatics Laboratory, Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI)
  • Budapest University of Technology and Economics (BME), Budapest, Hungary
Bibliografia
  • [1] Saaty TL. The Analytic Hierarchy Process: planning, priority setting, resource allocation. New York: McGraw-Hill; 1980. ISBN-13:978-0070543713.
  • [2] Perron O. Zur Theorie der Matrices. Mathematische Annalen. 1907;64(2):248–263. ISSN:1432-1807. doi:10.1007/BF01449896.
  • [3] Crawford G, Williams C. Analysis of subjective judgment matrices. Santa Monica: Rand Corporation; 1980. R-2572-AF. ISBN/EAN: 0-8330-0639-8.
  • [4] Crawford G, Williams C. A note on the analysis of subjective judgment matrices. Journal of Mathematical Psychology. 1985;29(4):387–405. doi:10.1016/0022-2496(85)90002-1.
  • [5] Graan JGD. Extensions of the multiple criteria analysis method of T.L. Saaty. Voorburg: National Institute for Water Supply; 1980.
  • [6] Harker PT. Incomplete pairwise comparisons in the analytic hierarchy process. Mathematical Modelling. 1987;9(11):837–848. doi:10.1016/0270-0255(87)90503-3.
  • [7] Shiraishi S, Obata T, Daigo M. Properties of a positive reciprocal matrix and their application to AHP. Journal of the Operations Research Society of Japan-Keiei Kagaku. 1998;41(3):404–414.
  • [8] Shiraishi S, Obata T. On a maximization problem arising from a positive reciprocal matrix in AHP. Bulletin of informatics and cybernetics. 2002;34(2):91–96. ISSN:0286-522X.
  • [9] Kwiesielewicz M. The logarithmic least squares and the generalized pseudoinverse in estimating ratios. European Journal of Operational Research. 1996;93(3):611–619. doi:10.1016/0377-2217(95)00079-8.
  • [10] Bozóki S, Fülöp J, Rónyai L. On optimal completion of incomplete pairwise comparison matrices. Mathematical and Computer Modelling. 2010;52(1-2):318–333. doi:10.1016/j.mcm.2010.02.047.
  • [11] Kaiser HF, Serlin RC. Contributions to the Method of Paired Comparisons. Applied Psychological Measurement. 1978;2(3):423–432. doi:10.1177/014662167800200317.
  • [12] Jensen RE. Comparison of consensus methods for priority ranking problems. Decision Sciences. 1986;17(2):195–211. doi:10.1111/j.1540-5915.1986.tb00221.x.
  • [13] Genest C, Lapointe F, Drury SW. On a proposal of Jensen for the analysis of ordinal pairwise preferences using Saaty’s eigenvector scaling method. Journal of Mathematical Psychology. 1993; 37(4):575–610. doi:10.1006/jmps.1993.1035.
  • [14] Bana e Costa CA, Vansnick JC. A critical analysis of the eigenvalue method used to derive priorities in AHP. European Journal of Operational Research. 2008;187(3):1422–1428. doi:10.1016/j.ejor.2006.09.022.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04896d63-0218-4632-b3fd-9d4cb2c1ae1e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.