PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reduction of epoxy resin VOCs using higher fatty acids from the agricultural industry : a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Redukcja lotnych związków organicznych (LZO) w żywicach epoksydowych poprzez stosowanie wyższych kwasów tłuszczowych z przemysłu rolniczego : przegląd
Języki publikacji
EN
Abstrakty
EN
A disadvantage of many commonly used impregnants and resins is their high toxicity, related to the presence of harmful aromatic hydrocarbons and volatile organic compounds (VOCs) in their composition. VOCs account for a relatively large approx. 30% portion in the synthetic resins industry. One idea for reducing or eliminating VOCs from the production of resins, paints is the use of high-quality intermediates and biodegradable raw materials. A perspective on novel approaches to protecting concrete surfaces was presented, involving a concept of using two types of higher fatty acids for this purpose: stearic acid (STA) and methyl esters (ME). Recent technological advancements have centered on vegetable oil feedstocks for industrial applications. This is due to their suitability for industrial production of agents, as they substitute non-renewable hydrocarbons. The cited tests confirm the hydrophobic nature of coatings formed using STA and ME on various materials. From the analysis of the literature, it appears that the study of anticorrosion coatings with biodegradable admixtures, i.e. higher fatty acids, should be developed because of their promising results in efficiency, reduction of toxic substances (VOCs) and their impact on the environment.
PL
Wadą wielu powszechnie stosowanych impregnatów i żywic jest ich wysoka toksyczność, związana z obecnością szkodliwych węglowodorów aromatycznych i lotnych związków organicznych (LZO) w ich składzie. LZO stanowią stosunkowo dużą, ok. 30% część w przemyśle żywic syntetycznych. Jednym z pomysłów na redukcję lub wyeliminowanie LZO z produkcji żywic i farb jest stosowanie wysokiej jakości półproduktów i biodegradowalnych surowców. Przedstawiono perspektywę nowych podejść do ochrony powierzchni betonowych, obejmującą koncepcję wykorzystania w tym celu dwóch rodzajów wyższych kwasów tłuszczowych: kwasu stearynowego (STA) i estrów metylowych (ME). Ostatnie postępy technologiczne skupiają się na surowcach z olejów roślinnych do zastosowań przemysłowych. Wynika to z ich przydatności do przemysłowej produkcji środków, ponieważ zastępują one nieodnawialne węglowodory. Przytoczone badania potwierdzają hydrofobowy charakter powłok tworzonych przy użyciu STA i ME na różnych materiałach. Z analizy literatury wynika, że należy rozwijać badania nad powłokami antykorozyjnymi z domieszkami biodegradowalnymi, tj. wyższymi kwasami tłuszczowymi, ze względu na ich obiecujące wyniki w zakresie efektywności, redukcji substancji toksycznych (LZO) i ich wpływu na środowisko.
Rocznik
Strony
45--56
Opis fizyczny
Bibliogr. 63 poz., rys., tab., wykr.
Twórcy
autor
  • Doctoral School in Lublin University of Technology, Lublin, Poland
  • Lublin University of Technology, Faculty of Civil Engineering and Architecture, Department of Geotechnical Engineering, Lublin, Poland
Bibliografia
  • 1. Aguiar, J.B. & Júnior, C. (2013). Carbonation of surface protected concrete, Construction and Building Materials, 49, pp. 478-483. DOI:10.1016/j.conbuildmat.2013.08.058
  • 2. Albayrak A.T., Yasar, M., Gurkaynak, M.A. & Gurgey, I. (2005). Investigation of the effects of fatty acids on the compressive strength of concrete and the grindability of the cement, Cement and Concrete Research, 35, 2, pp. 400-404. DOI:10.1016/j.cemconres.2004.07.031
  • 3. Almusallam, A.A., Khan, F.M., Dulaijan, S.U. & Al-Amoudi, O. (2003). Effectiveness of surface coatings in improving concrete durability, Cement and Concrete Composites, 25, 4, pp. 473-481.
  • 4. Barnat-Hunek, D., Andrzejuk, W., Szafraniec, M., Kachel, M. & Hunek, R. (2023). Modification of Concrete Surface with Higher Fatty Acids, Advances in Science and Technology Research Journal, 17, 2, pp. 307-321. DOI:10.12913/22998624/159722
  • 5. Barnat-Hunek, D., Grzegorczyk-Frańczak, M. & Suchorab, Z. (2020). Surface hydrophobisation of mortars with waste aggregate by nanopolymer trietoxi-isobutyl-silane and methyl silicon resin, Construction and Building Materials, 264, 120175. DOI:10.1016/j.conbuildmat.2020.120175
  • 6. Basheer, L. & Cleland, D.J. (2006). Freeze-thaw resistance of concretes treated with pore liners, Construction and Building Materials, 20, 10, pp. 990-998.
  • 7. Brochocka, A., Nowak, A., Panek, R., Kozikowski, P. & Franus, W. (2021). Effective removal of odors from air with polymer nonwoven structures doped by porous materials to use in respiratory protective devices, Archives of Environmental Protection 47, 2 pp. 3-19. DOI:10.24425/aep.2021.137274
  • 8. Cellat, K., Beyhan, B., Güngör, C., Konuklu, Y., Karahan, O., Dündar, C. & Paksoy, H. (2015). Thermal enhancement of concrete by adding bio-based fatty acids as phase change materials, Energy and Buildings, 106, pp. 156-163. DOI:10.1016/j.enbuild.2015.05.035 037
  • 9. Cunha, S., P. Leite, P. & Aguiar, J. (2020). Characterization of innovative mortars with direct incorporation of phase change materials, Journal of Energy Storage, 30, 101439. DOI:10.1016/j.est.2020.101439
  • 10. Cunha, S., Tavares, A., Aguiar, J.B. & Castro, F. (2022). Cement mortars with ceramic molds shells and paraffin waxes wastes: physical and mechanical behavior, Construction and Building Materials, 342, 127949. DOI:10.1016/j. conbuildmat.2022.127949
  • 11. Directive 1999/13/EC of 11 March 1999 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain activities and installations.
  • 12. Dobrzyniewski, D., Szulczyński, B., Rybarczyk, P. & Gębicki, J. (2023). Process control of air stream deodorization from vapors of VOCs using a gas sensor matrix conducted in the biotrickling filter (BTF), Archives of Environmental Protection, 49, 2, pp. 85-94. DOI:10.24425/aep.2023.145900
  • 13. Facio, D.S. & Mosquera, M.J. (2013). Simple strategy for producing superhydrophobic nanocomposite coatings in situ on a building substrate, ACS Applied Materials & Interfaces, 5, pp. 7517-7526. DOI:10.1021/am401826g
  • 14. Fact. MR, (2024). (https://www.factmr.com/report/resin-solvents-market/ (23.11.2024)).
  • 15. Feng, Z., Wang, F., Xie, T., Ou, J., Xue, M. & Li, W. (2019). Integral hydrophobic concrete without using silane, Construction and Building Materials, 227, 116678. DOI:10.1016/j.conbuildmat.2019.116678
  • 16. Fiszer, S. & Szałajko, U. (2000). Vegetable oils as substitutes for petroleum-based lubricants, Nafta-Gaz, 3, pp. 181-188 (in Polish).
  • 17. Fortune Business Insights, (2024). (http:/www.fortunebusinessinsights.com/water-soluble-polymers-market-106175/(23.11.2024)).
  • 18. Fortune Business Insights, (2024). (https://www.fortunebusinessinsights.com/industry-reports/resin-market-101746/ (23.11.2024)).
  • 19. Gao, M., Liu, W., Wang, H., Shao, X., Shi, A., An, X., Li, G. & Nie, L. (2021). Emission factors and characteristics of volatile organic compounds (VOCs) from adhesive application in indoor decoration in China, Science of The Total Environment, 779, 145169. DOI:10.1016/j.scitotenv.2021.145169
  • 20. Hassa, R., Mrzigod, J. & Nowakowski, J. (2004). Handy Chemical Dictionary, Videograf II, Katowice 2004. (in Polish).
  • 21. Hodul, J., Beníková, T. & Drochytka, R. (2024). Substantiation of the Effectiveness of Water-Soluble Hydrophobic Agents on the Properties of Cement Composites, Buildings, 14, 3364. DOI:10.3390/buildings14113364
  • 22. Hu, Y., Jia, P., Lamm, M.-E., Sha, Y., Kurnaz, L.-B., Ma, & Zhou, Y. (2023). Plant oil-derived vitrimers-graphene composites with self-healing ability triggered by multiple stimuli, Composites Part B-Engineering, 259, 110704. DOI:10.1016/j.compositesb.2023.110704
  • 23. Johansson, K. & Johansson, M. (2007). The effect of fatty acid methyl esters on the curing performance and final properties of thermally cured solvent-borne coil coatings, Progress in Organic Coatings, 59, 2, pp. 146-151. DOI:10.1016/j.porgcoat.2007.02.004
  • 24. Lei, L., Wang, Q., Xu, S., Wang, N. & Zheng, X. (2020). Fabrication of superhydrophobic concrete used in marine environment with anti-corrosion and stable mechanical properties, Construction and Building Materials, 251, 118946. DOI:10.1016/j.conbuildmat.2020.118946
  • 25. Levi, M., Ferro, C., Regazzoli, D., Dotelli, G. & Lo Presti, A. (2002). Comparative evaluation method of polymer surface treatments applied on high performance concrete, Journal of Materials Science, 37, pp. 4881-4888.
  • 26. Li, C., Mu, Y., Liang, X., Xia, T., Li, X. & Wu, M. (2024). A multifunctional coating with switchable wettability for efficient oil-water and emulsions separation, Journal of Water Process Engineering, 66, 105955. DOI:10.1016/j.jwpe.2024.105955
  • 27. Liu, H., Zhang, T.C., He, H., Ouyang, L. & Yuan, S. (2020). A stearic Acid/CeO2 bilayer coating on AZ31B magnesium alloy with superhydrophobic and self-cleaning properties for corrosion inhibition, Journal of Alloys and Compounds, 834, 155210. DOI:10.1016/j.jallcom.2020.155210.
  • 28. Liu, X., Zhang, T.C., He, H., Ouyang, L. & Yuan, S. (2020). A stearic Acid/CeO2 bilayer coating on AZ31B magnesium alloy with superhydrophobic and self-cleaning properties for corrosion inhibition, Journal of Alloys and Compounds, 834, 155210. DOI:10.1016/j.jallcom.2020.155210
  • 29. Loperena, A.P., Saidman, S.B. & Lehr, I.L. (2024). Improvement in corrosion resistance of AZ91D Mg alloy in simulated body fluid by cerium-based/stearic acid composite coatings, Corrosion Communications, 14, pp. 11-22. DOI:10.1016/j.corcom.2023.08.004
  • 30. Ma, Y., Fu, S., Gao, S., Zhang, S., Che, X., Wang, Q. & Jiao, Z. (2021). Update on volatile organic compound (VOC) source profiles and ozone formation potential in synthetic resins industry in China, Environmental Pollution, 291, 118253. DOI:10.1016/j.envpol.2021.118253
  • 31. Medeiros, M.H. & Helene, P. (2009). Surface treatment of reinforced concrete in marine environment: Influence on chloride diffusion coefficient and capillary water absorption, Construction and Building Materials, 23, 3, pp. 1476-1484.
  • 32. Mihaljevic, S.N. & Chidiac, S.E. (2022). Effective free water diffusion coefficient of cement paste internally cured with superabsorbent polymers. Journal of Building Engineering, 45. DOI:10.1016/j.jobe.2021.103600
  • 33. Parker, D., Ham, J., Woodbury, B., Cai, L., Spiehs, M., Rhoades, M., Trabue, S., Casey, K., Todd, R. & Cole, A. (2013). Standardization of flux chamber and wind tunnel flux measurements for quantifying volatile organic compound and ammonia emissions from area sources at animal feeding operations, Atmospheric Environmen, 66, pp. 72-83. DOI:10.1016/j.atmosenv.2012.03.068
  • 34. Qian, Z., Long, F., Duan, X., Bib, F., Tian, X., Qi, Z. & Ge, C. (2024). Environmental and economic impact analysis of levying VOCs environmental protection tax in China, Heliyon, 10, 17, e36738. DOI:10.1016/j.heliyon.2024.e36738
  • 35. Ramezanpour, J., Ramezanzadeh, B. & Samani, N. A. (2024). Progress in bio-based anti-corrosion coatings; A concise overview of the advancements, constraints, and advantages, Progress in Organic Coatings, 194, 108556. DOI:10.1016/j.porgcoat.2024.108556
  • 36. Rudawska, A. Selected Issues in Constituting Homogeneous and Hybrid Adhesive Connections, Politechnika Lubelska, Lublin 2013. (in Polish).
  • 37. Salar-Behzadi, S., Karrer, J., Demiri, V., Barrios, B., Corzo, C., Meindl, C., Lochmann, D. & Reyer, S. (2020). Polyglycerol esters of fatty acids as safe and stable matrix forming tableting excipients: a structure-function analysis, Journal of Drug Delivery Science and Technology, 60, 102019. DOI:10.1016/j.jddst.2020.102019.
  • 38. She, W., Yang, J., Hong, J., Sun, D., Mu, S. & Miao, C. (2020). Superhydrophobic concrete with enhanced mechanical robustness: nanohybrid composites, strengthen mechanism and durability evaluation, Construction and Building Materials, 247, 118563. DOI:10.1016/j.conbuildmat.2020.118563
  • 39. Su, Y., Lin, H., Zhang, S., Yang, Z. & Yuan, T. (2020). One-step synthesis of novel renewable vegetable oil-based acrylate prepolymers and their application in UV-curable coatings, Polymers 12, 1165. DOI:10.3390/polym12051165
  • 40. Suleiman, A.R., Soliman, A.M. & Nehdi, M.L. (2014). Effect of surface treatment on durability of concrete exposed to physical sulfate attack, Construction and Building Materials, 73, pp. 674-681. DOI:10.1016/j.conbuildmat.2014.10.006
  • 41. Thissen, P., Bogner, A. & Dehn, F. (2024). Surface treatments on concrete: an overview on organic, inorganic and nano-based coatings and an outlook about surface modification by rare-earth oxides, RSC Sustainability, 2, 8, pp. 2092-2124. DOI:10.1039/d3su00482a
  • 42. Tian, J., You, Y., Zhou, H., Li, H., Hu, L., Tian, Y., Xie, H., Xie, Y. & Hu, X. (2024). Biobased thermoset substrate for flexible and sustainable organic photovoltaics, Advanced Functional Materials, 34, 29, 2400547, DOI:10.1002/adfm.202400547
  • 43. Valuates Reports, (2024). (https://reports.valuates.com/market-reports/(23.11.2024))
  • 44. Vantage Market Research, (2023). (http:/www.vantagemarketresearch.com/industry-report/water-based-resins-market-2590?srsltid=AfmBOoosb6mH0F2ZvzqOdXmnC9-JMS1ZVNdIap7wa9--9fBMZ2Y3DMUa/ (21.11.2024)).
  • 45. Vogt, E. & Topolska, K. (2023). Hydrophobization of diatomaceous earth used to remove oil pollutants, Gospodarka Surowcami Mineralnymi - Mineral Resources Management 39, 2, pp. 209-222. DOI:10.24425/gsm.2023.145888
  • 46. Wang, B., Zhang, J., Yan, C., Li, J., Wang, X. & Wang, N. (2024). Paraffin-polyglycerol fatty ester composite as a coating material for delaying the hydration of carbide slag. Materials Chemistry and Physics, 317, 128986. DOI:10.1016/j.matchemphys.2024.128986
  • 47. Wang, D., Nie, L., Shao, X. & Yu, H. (2017). Exposure profile of volatile organic compounds receptor associated with paints consumption, Science of The Total Environment, 603-604, pp. 57-65. DOI:10.1016/j.scitotenv.2017.05.247
  • 48. Wang, H., Zhang, C., Zeng, W. & Zhou, Q. (2019). Making alkyd greener: Modified cardanol as bio-based reactive diluents for alkyd coating, Progress in Organic Coatings, 135, 1, pp. 281-290. DOI:10.1016/j.porgcoat.2019.06.018
  • 49. Wang, H., Zhang, R., Kong, H., Wang, K., Sun, L., Yu, X., Zhao, J., Xiong, J., Tran, P.T.M. & Balasubramanian, R. (2024). Long-term emission characteristics of VOCs from building materials, Journal of Hazardous Materials, 136337. DOI:org/10.1016/j.jhazmat.2024.136337
  • 50. Wang, Y., Zhang, D. & Lu, Z. (2015). Hydrophobic Mg-Al layered double hydroxide film on aluminum: fabrication and microbiologically influenced corrosion resistance properties, Colloids and Surfaces, A, 474, pp. 44-51. DOI:10.1016/j.colsurfa.2015.03.005
  • 51. World Bank, (2024). (https://wits.worldbank.org/trade/comtrade/en/country/all/year/2023/(23.11.2024))
  • 52. Wu, Y., Dong, L., Shu, X., Yang, Y., She, W. & Ran, Q. (2022). A review on recent advances in the fabrication and evaluation of superhydrophobic concreto, Composites Part B 237, 109867. DOI:10.1016/j.compositesb.2022.109867
  • 53. Xiao, H., Zhang, J., Hou, Y., Wang, Y., Qiu, Y., Chen, P. & Ye, D. (2024). Process-specified emission factors and characteristics of VOCs from the auto-repair painting industry, Journal of Hazardous Materials, 467, 133666. DOI:10.1016/j.jhazmat.2024.133666
  • 54. Xiao, Z., Yang, X., Gu, H., Hu, J., Zhang, T., Chen, J., Pan, X., Xiu, G., Zhang, W. & Lin, M. (2024). Characterization and sources of volatile organic compounds (VOCs) during 2022 summer ozone pollution control in Shanghai, China, Atmospheric Environment, 327, 120464. DOI:10.1016/j.atmosenv.2024.120464
  • 55. Xu, Q.B., Wang, X.Y., Wang, P., Cheng, L.Z., Wan, Y.P. & Wang, Z.Q. (2022). Sustainable and superhydrophobic coating from epoxidized soybean oil and stearic acid on cotton fabric etched by deep eutectic solvent. Materials Today Chemistry, 26, 101211. DOI:10.1016/j.mtchem.2022.101211
  • 56. Yang, L., Pang, Y., Tang, Q., Chen, H., Gao, D., Li, H. & Wang, H. (2024). Effects of the stearic acid modified mica powder on hydrophobic properties and salt freezing resistance of mortar: Experimental study and microscopic mechanism analysis, Construction and Building Materials, 416, 135188. DOI:10.1016/j.conbuildmat.2024.135188.
  • 57. Yao, S., Wang, Q., Zhang, J., Zhang, R., Gao, Y., Zhang H., Li, J. & Zhou, Z. (2021). Ambient volatile organic compounds in a heavy industrial city: Concentration, ozone formation potential, source,s, and health risk assessment, Atmospheric Pollution Research, 12, 5, 101053. DOI:10.1016/j.apr.2021.101053
  • 58. Yaras, A., Sutcu, M., Gencel, O. & Erdogmus, E. (2019). Use of carbonation sludge in clay based building materials processing for eco-friendly, lightweight and thermal insulation, Construction and Building Materials, 224, pp. 57-65. DOI:10.1016/j.conbuildmat.2019.07.080.
  • 59. Yuan, Y., Zhang, N., Tao, W., Cao, X. & He, Y. (2014). Fatty acids as phase change materials: a review, Renewable and Sustainable Energy Reviews, 29, pp. 482-498. DOI:10.1016/j.rser.2013.08.107.
  • 60. Zajezierska, A. (2016). Biodegradable Lubricating Greases, Instytut Nafty i Gazu - Państwowy Instytut Badawczy, 2016, Kraków. DOI:10.18668/PN2016.197
  • 61. Zhang, H.-L., Zuo, X.-B., Sun, Q.-Q., Liu, J.-Y., Zou, Y.-X., Zhang, T.-T. & Tian, J.-L. (2024). Preparation of h-BN@ZnO composite epoxy coating for improve durability and antibacterial properties of concrete, Construction and Building Materials, 438, 137082. DOI:10.1016/j.conbuildmat.2024.137082
  • 62. Zhang, L., Zhang, M., Gao, J., Gao, M., Wang, X., Li, B. & Liu, J. (2023). Study on the preparation and stearic acid modification of hydrophobic Ni625 laser cladding coating, Materials Letters, 346, 134526. DOI:10.1016/j.matlet.2023.134526
  • 63. Zweep, N. (2014). Natural coatings for natural substrates, European Coating Journal, 1, pp. 36-39
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0489458f-8f4c-4b9f-b428-f990a5cbeb76
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.