PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Combined Effect of Silicon Dioxide and Titanium Dioxide Nanoparticles on Concrete Properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nanoconcrete is an attractive research area because of its recent practical applications in building materials technologies. This study investigates the individual and combined effects of using nanoparticles in concrete mixtures as a cement substitute. Microscopic images are also used to determine changes in the microstructure of modified concrete in the present study. Concrete’s thermal and mechanical properties, including thermal conductivity (k), specific heat capacity (C), thermal diffusivity (α), and compressive strength (σ), are the leading concrete characteristics examined. The current study used different percentages (0%, 1%, 3%, and 5%) of nano-SiO2, nano-TiO2, and combined nano-SiO2/TiO2 particles as cement substitutes for 7 and 28 days of curing to examine the characteristics of nanoconcrete compared to conventional concrete (CC). The results indicated that adding individual nanoparticles to CC could improve concrete’s thermal and mechanical properties. Among the investigated nanomaterials (nano-SiO2, nano-TiO2, and combined nano-SiO2/TiO2 particles), nano-SiO2 was superior in that context. The optimal thermal properties of nanoconcrete were achieved when 5% nano-SiO2 (C-S5 specimen) was added. The k and α coefficients of sample C-S5 compared to the CC specimen were reduced by 65.6% and 80.3%, respectively, while the C coefficient was increased by 12.8%. Meanwhile, the optimal compressive strength coefficient of nanoconcrete was achieved when 3% nano-SiO2 (C-S3 specimen) was added, where the compressive strength coefficient of sample C-S3 compared to sample CC was increased by 19.6%. In contrast, for the combined effect, the thermal properties of concrete were improved, but the compressive strength coefficient of concrete was reduced. Overall, the present experimental findings offer valuable information about the impact of nanotechnology on high-performance concrete to save energy in buildings.
Rocznik
Strony
319--335
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering, Faculty of Engineering, Tafila Technical University, P.O. Box 179, 66110 Tafila, Jordan
  • Department of Civil Engineering, Faculty of Engineering, Tafila Technical University, P.O. Box 179, 66110 Tafila, Jordan
Bibliografia
  • 1. Abbas, Z.K., Al-Baghdadi, H.A., Mahmood, R.S., Abd, E.S., 2023. Reducing the Reactive Powder Concrete Weight by Using Building Waste as Replacement of Cement. J. Ecol. Eng. 24 (8) , 25–32. doi:10.12911/22998993/164748
  • 2. Akkouri, N., Bourzik, O., Baba, K., Nounah, A., 2022. Experimental study of the thermal and mechanical properties of concrete incorporating recycled polyethylene. Mater. Today Proc. 58, 1525–1529. doi:10.1016/j.matpr.2022.03.293
  • 3. Al-Amir, Q.R., Hamzah, H.K., Ali, F.H., Hatami, M., Al-Kouz, W., Al-Manea, A., Al-Rbaihat, R., Alahmer, A., 2023. Investigation of Natural Convection and Entropy Generation in a Porous Titled Z-Staggered Cavity Saturated by TiO2-Water Nanofluid. Int. J. Thermofluids 19 June , 100395. doi:10.1016/j.ijft.2023.100395
  • 4. Al-Rbaihat, R., Alahmer, H., Alahmer, A., Altork, Y., Al-Manea, A., Awwad, K.Y.E., 2023. Energy and Exergy Analysis of a Subfreezing Evaporator Environment Ammonia-Water Absorption Refrigeration Cycle: Machine Learning and Parametric Optimization. Int. J. Refrig.
  • 5. Al-Rbaihat, R., Awwad, K.Y.E., 2021. Thermal and mechanical characteristics of pozzolana concrete 18(6) , 28–35. doi:10.9790/1684-1806032835
  • 6. Al-Rbaihat, R., Sakhrieh, A., Al-Asfar, J., Alahmer, A., Ayadi, O., Al-Salaymeh, A., Al_hamamre, Z., Al-bawwab, A., Hamdan, M., 2017. Performance Assessment and Theoretical Simulation of Adsorption Refrigeration System Driven by Flat Plate Solar Collector. Jordan J. Mech. Ind. Eng. 11 (1).
  • 7. Al-Marafi, M.N.I., 2021. Effects of hydrated lime on moisture susceptibility of asphalt concrete. Advances in Science and Technology. Research Journal 15 (2), 13-17.
  • 8. Alahmer, A., Wang, X., Al-Rbaihat, R., Amanul Alam, K.C., Saha, B.B., 2016. Performance evaluation of a solar adsorption chiller under different climatic conditions. Appl. Energy 175, 293–304. doi:10.1016/j.apenergy.2016.05.041
  • 9. Almohammad-albakkar, M., Behfarnia, K., 2021. Effects of the combined usage of micro and nanosilica on the drying shrinkage and compressive strength of the self-compacting concrete. J. Sustain. Cem. Mater. 10(2) , 92–110. doi:10.1080/21650373.2020.1755382
  • 10. Alrbai, M., Alahmer, H., Alahmer, A., Al-Rbaihat, R., Aldalow, A., Al-Dahidi, S., Hayajneh, H., 2023. Retrofitting conventional chilled-water system to a solar-assisted absorption cooling system: Modeling, polynomial regression, and grasshopper optimization. J. Energy Storage 65, 107276. doi:https://doi.org/10.1016/j.est.2023.107276
  • 11. Askari Dolatabad, Y., Kamgar, R., Gouhari Nezad, I., 2020. Rheological and Mechanical Properties, Acid Resistance and Water Penetrability of Lightweight Self-Compacting Concrete Containing Nano-SiO2, Nano-TiO2 and Nano-Al2O3. Iran. J. Sci. Technol. - Trans. Civ. Eng. 44 s1 , 603–618. doi:10.1007/s40996-019-00328-1
  • 12. Association, N.R.M.C., 2003. CIP 35-testing compressive strength of concrete. Concr. Pract. What, Why How.
  • 13. Bilski, M., Górnaś, P., Pożarycki, A., Skrzypczak, P., Słowik, M., Mielczarek, M., Wróblewska, A., Semkło, Ł., 2023. Thermal Diffusivity of Concrete Samples Assessment Using a Solar Simulator. Materials (Basel). 16 (3) , 1–14. doi:10.3390/ma16031268
  • 14. Demirboǧa, R., 2003. Influence of mineral admixtures on thermal conductivity and compressive strength of mortar. Energy Build. 35 (2) , 189–192. doi:10.1016/S0378-7788(02)00052-X
  • 15. Ebrahimi Fard, H., Jabbari, M., 2017. The Effect of Magnesium Oxide Nano Particles on the Mechanical and Practical Properties of Self-Compacting Concrete. J. Civ. Eng. Mater. Appl. 1 (2) , 77–87. doi:10.15412/j.jcema.12010205
  • 16. Faraj, R.H., Mohammed, A.A., Omer, K.M., 2022. Self-compacting concrete composites modified with nanoparticles: A comprehensive review, analysis and modeling. J. Build. Eng. 50 November 2021 , 104170. doi:10.1016/j.jobe.2022.104170
  • 17. Goel, G., Sachdeva, P., Chaudhary, A.K., Singh, Y., 2022. The use of nanomaterials in concrete: A review. Mater. Today Proc. 69, 365–371. doi:10.1016/j.matpr.2022.09.051
  • 18. Howlader, M.K., Rashid, M.H., Mallick, D., Haque, T., 2012. Effects of aggregate types on thermal properties of concrete. ARPN J. Eng. Appl. Sci. 7 (7) , 900–907.
  • 19. Huseien, G.F., 2023. A Review on Concrete Composites Modified with Nanoparticles. J. Compos. Sci. 7 2 . doi:10.3390/jcs7020067
  • 20. Jittabut, P., 2015. Effect of Nanosilica on Mechanical and Thermal Properties of Cement Composites for Thermal Energy Storage Materials, Energy Procedia. Elsevier B.V. doi:10.1016/j.egypro.2015.11.454
  • 21. Kaya, A., Kar, F., 2016. Properties of concrete containing waste expanded polystyrene and natural resin. Constr. Build. Mater. 105, 572–578. doi:10.1016/j.conbuildmat.2015.12.177
  • 22. Khaloo, A., Mobini, M.H., Hosseini, P., 2016. Influence of different types of nano-SiO2 particles on properties of high-performance concrete. Constr. Build. Mater. 113, 188–201. doi:10.1016/j.conbuildmat.2016.03.041
  • 23. Kim, K.-H., Jeon, S.-E., Kim, J.-K., Yang, S., 2003. An experimental study on thermal conductivity of concrete. Cem. Concr. Res. 33 (3), 363–371.
  • 24. Kiran, T., Andrushia, D., El Hachem, C., Kanagaraj, B., N, A., Azab, M., 2023. Effect of nano cementitious composites on corrosion resistance and residual bond strength of concrete. Results Eng. 18 January , 101064. doi:10.1016/j.rineng.2023.101064
  • 25. Mesrar, H., Mesrar, L., Touache, A., Jabrane, R., 2023. Manufacture of clay aggregate doped with pozzolan destined for lightweight concrete. J. Ecol. Eng. 24 (1) , 349–359. doi:10.12911/22998993/156183
  • 26. Miyandehi, B.M., Feizbakhsh, A., Yazdi, M.A., Liu, Q. feng, Yang, J., Alipour, P., 2016. Performance and properties of mortar mixed with nano-CuO and rice husk ash. Cem. Concr. Compos. 74, 225–235. doi:10.1016/j.cemconcomp.2016.10.006
  • 27. Saleh, A., A. Attar, A., Algburi, S., K. Ahmed, O., 2023. Comparative study of the effect of silica nanoparticles and polystyrene on the properties of concrete. Results Mater. 18 May , 100405. doi:10.1016/j.rinma.2023.100405
  • 28. Nazari, A., Riahi, S., 2011. Abrasion resistance of concrete containing SiO2 and Al2O3 nanoparticles in different curing media. Energy Build. 43 10, 2939–2946. doi:10.1016/j.enbuild.2011.07.022
  • 29. Neville, A.M., 1996. Properties of concrete 4th Ed. Harlow Addit. Wesley Longman Ltd.
  • 30. Niewiadomski, P., Cwirzeń, A., Hoła, J., 2015. The influence of an additive in the form of selected nanoparticles on the physical and mechanical characteristics of self-compacting concrete. Procedia Eng. 111 TFoCE , 601–606. doi:10.1016/j.proeng.2015.07.052
  • 31. Nuaklong, P., Sata, V., Wongsa, A., Srinavin, K., Chindaprasirt, P., 2018. Recycled aggregate high calcium fly ash geopolymer concrete with inclusion of OPC and nano-SiO2. Constr. Build. Mater. 174, 244–252. doi:10.1016/j.conbuildmat.2018.04.123
  • 32. Oh, T., Chun, B., Jang, Y.S., Yeon, J.H., Banthia, N., Yoo, D.Y., 2023. Effect of nano-SiO2 on fiber–matrix bond in ultra-high-performance concrete as partial substitution of silica flour. Cem. Concr. Compos. 138, Jan., 104957. doi:10.1016/j.cemconcomp.2023.104957
  • 33. Pathak, S.S., Vesmawala, G.R., 2022. Effect of nano TiO2 on mechanical properties and microstructure of concrete. Mater. Today Proc. 65, 1915–1921. doi:10.1016/j.matpr.2022.05.161
  • 34. Raheem, A., Ikotun, B., Oyebisi, S., Ede, A., 2023. Machine learning algorithms in wood ash-cement-Nano TiO2-based mortar subjected to elevated temperatures. Results Eng. 18 January , 101077. doi:10.1016/j.rineng.2023.101077
  • 35. Reddy, L.S.I., Vijayalakshmi, M.M., Praveenkumar, T.R., 2022. Thermal conductivity and strength properties of nanosilica and GGBS incorporated concrete specimens. Silicon 14(1), 145–151. doi:10.1007/s12633-020-00813-7
  • 36. Ren, J., Lai, Y., Gao, J., 2018. Exploring the influence of SiO2 and TiO2 nanoparticles on the mechanical properties of concrete. Constr. Build. Mater. 175, 277–285. doi:10.1016/j.conbuildmat.2018.04.181
  • 37. Saleh, A.N., Attar, A.A., Ahmed, O.K., Mustafa, S.S., 2021. Improving the thermal insulation and mechanical properties of concrete using Nano-SiO2. Results Eng. 12 Oct., 100303. doi:10.1016/j.rineng.2021.100303
  • 38. Salman, S.D., Jubier, N.J., Al-zubaidi, A.B., 2023. Geopolymer Concrete Production by Using Nano- Bauxite Binder 24 (10), 305–314.
  • 39. Sastry, K.V.S.G.K., Sahitya, P., Ravitheja, A., 2021. Influence of nano TiO2 on strength and durability properties of geopolymer concrete. Mater. Today Proc. 45, 1017–1025. doi:10.1016/j.matpr.2020.03.139
  • 40. Selvasofia, S.D.A., Sarojini, E., Moulica, G., Thomas, S., Tharani, M., Saravanakumar, P.T., Kumar, P.M., 2021. Study on the mechanical properties of the nanoconcrete using nano-TiO2 and nanoclay. Mater. Today Proc. 50, 1319–1325. doi:10.1016/j.matpr.2021.08.242
  • 41. Syamsunur, D., Wei, L., Ahmed Memon, Z., Surol, S., Md Yusoff, N.I., 2022. Concrete Performance Attenuation of Mix Nano-SiO2 and Nano-CaCO3 under High Temperature: A Comprehensive Review. Materials (Basel), 15-20 . doi:10.3390/ma15207073
  • 42. Talebi, H.R., Kayan, B.A., Asadi, I., Hassan, Z.F.B.A., 2020. Investigation of thermal properties of normal weight concrete for different strength classes. J. Environ. Treat. Tech. 8(3) , 908–914.
  • 43. Uysal, H., Demirboga, R., Şahin, R., Gül, R., 2004. The effects of different cement dosages, slumps, and pumice aggregate ratios on the thermal conductivity and density of concrete. Cem. Concr. Res. 34(5), 845–848. doi:10.1016/j.cemconres.2003.09.018
  • 44. Yang, J., Mohseni, E., Behforouz, B., Khotbehsara, M.M., 2015. An experimental investigation into the effects of Cr2O3 and ZnO2 nanoparticles on the mechanical properties and durability of self-compacting mortar. Int. J. Mater. Res. 106(8), 886–892. doi:10.3139/146.111245
  • 45. Zegardło1, B., Kobyliński, K., 2021. Analysis of the Possibility of Using Extruded Polystyrene (XPS) Wastes to Make Lightweight Cement Composites. J. Ecol. Eng. 22 (7) , 123–131. doi:10.12911/22998993/139063
  • 46. Zhou, Y., Zheng, S., Huang, X., Xi, B., Huang, Z., Guo, M., 2021. Performance enhancement of green high-ductility engineered cementitious composites by nano-silica incorporation. Constr. Build. Mater. 281, 122618. doi:10.1016/j.conbuildmat.2021.122618
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-048379ae-844d-422e-8165-eb5f2e35980e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.