PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of identification procedure for the internal and external damping in a cracked rotor system undergoing forward and backward whirls

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work, a procedure for the estimation of internal damping in a cracked rotor system is described. The internal (or rotating) damping is one of the important rotor system parameters and it contributes to the instability of the system above its critical speed. A rotor with a crack during fatigue loading has rubbing action between the two crack faces, which contributes to the internal damping. Hence, internal damping estimation also can be an indicator of the presence of a crack. A cracked rotor system with an offset disc, which incorporates the rotary and translatory of inertia and gyroscopic effect of the disc is considered. The transverse crack is modeled based on the switching crack assumption, which gives multiple harmonics excitation to the rotor system. Moreover, due to the crack asymmetry, the multiple harmonic excitations leads to the forward and backward whirls in the rotor orbit. Based on equations of motions derived in the frequency domain (full spectrum), an estimation procedure is evolved to identify the internal and external damping, the additive crack stiffness and unbalance in the rotor system. Numerically, the identification procedure is tested using noisy responses and bias errors in system parameters.
Rocznik
Strony
229--255
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
autor
  • Faculty of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
Bibliografia
  • [1] R. Tiwari. Rotor Systems: Analysis and Identification. CRC Press, Boca Raton, FL, USA, 2017.
  • [2] F. Ehrich. Shaft whirl induced by rotor internal damping. Journal of Applied Mechanics, 31(2):279–282, 1964. doi: 10.1115/1.3629598.
  • [3] J. Shaw and S. Shaw. Instabilities and bifurcations in a rotating shaft. Journal of Sound and Vibration, 132(2):227–244, 1989. doi: 10.1016/0022-460X(89)90594-4.
  • [4] W. Kurnik. Stability and bifurcation analysis of a nonlinear transversally loaded rotating shaft. Nonlinear Dynamics, 5(1):39–52, 1994. doi: 10.1007/BF00045079.
  • [5] L.-W. Chen and D.-M. Ku. Analysis of whirl speeds of rotor-bearing systems with internal damping by C0 finite elements. Finite Elements in Analysis and Design, 9(2):169–176, 1991. doi: 10.1016/0168-874X(91)90059-8.
  • [6] D.-M. Ku. Finite element analysis of whirl speeds for rotor-bearing systems with internal damping. Mechanical Systems and Signal Processing, 12(5):599–610, 1998. doi: 10.1006/mssp.1998.0159.
  • [7] J. Melanson and J. Zu. Free vibration and stability analysis of internally damped rotating shafts with general boundary conditions. Journal of Vibration and Acoustics, 120(3):776–783, 1998. doi: 10.1115/1.2893897.
  • [8] G. Genta. On a persistent misunderstanding of the role of hysteretic damping in rotor dynamics. Journal of Vibration and Acoustics, 126(3):459–461, 2004. doi: 10.1115/1.1759694.
  • [9] M. Dimentberg. Vibration of a rotating shaft with randomly varying internal damping. Journal of Sound and Vibration, 285(3):759–765, 2005. doi: 10.1016/j.jsv.2004.11.025.
  • [10] F. Vatta and A. Vigliani. Internal damping in rotating shafts. Mechanism and Machine Theory, 43(11):1376–1384, 2008. doi: 10.1016/j.mechmachtheory.2007.12.009.
  • [11] J. Fischer and J. Strackeljan. Stability analysis of high speed lab centrifuges considering internal damping in rotor-shaft joints. Technische Mechanik, 26(2):131–147, 2006.
  • [12] O. Montagnier and C. Hochard. Dynamic instability of supercritical driveshafts mounted on dissipative supports – effects of viscous and hysteretic internal damping. Journal of Sound and Vibration, 305(3):378–400, 2007. doi: 10.1016/j.jsv.2007.03.061.
  • [13] M. Chouksey, J. K. Dutt, and S. V. Modak. Modal analysis of rotor-shaft system under the influence of rotor-shaft material damping and fluid film forces. Mechanism and Machine Theory, 48:81–93, 2012. doi: 10.1016/j.mechmachtheory.2011.09.001.
  • [14] P. Goldman and A. Muszynska. Application of full spectrum to rotating machinery diagnostics. Orbit, 20(1):17–21, 1991.
  • [15] R. Tiwari. Conditioning of regression matrices for simultaneous estimation of the residual unbalance and bearing dynamic parameters. Mechanical Systems and Signal Processing, 19(5):1082–1095, 2005. doi: 10.1016/j.ymssp.2004.09.005.
  • [16] I. Mayes and W. Davies. Analysis of the response of a multi-rotor-bearing system containing a transverse crack in a rotor. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 106(1):139–145, 1984. doi: 10.1115/1.3269142.
  • [17] R. Gasch. Dynamic behaviour of the Laval rotor with a transverse crack. Mechanical Systems and Signal Processing, 22(4):790–804, 2008. doi: 10.1016/j.ymssp.2007.11.023.
  • [18] M. Karthikeyan, R. Tiwari, S. and Talukdar. Development of a technique to locate and quantify a crack in a beam based on modal parameters. Journal of Vibration and Acoustics, 129(3):390–395, 2007. doi: 10.1115/1.2424981.
  • [19] S. K. Singh and R. Tiwari. Identification of a multi-crack in a shaft system using transverse frequency response functions. Mechanism and Machine Theory, 45(12):1813–1827, 2010. doi: 10.1016/j.mechmachtheory.2010.08.007.
  • [20] C. Shravankumar and R. Tiwari. Identification of stiffness and periodic excitation forces of a transverse switching crack in a Laval rotor. Fatigue & Fracture of Engineering Materials & Structures, 36(3):254–269, 2013. doi: 10.1111/j.1460-2695.2012.01718.x.
  • [21] S. Singh and R. Tiwari. Model-based fatigue crack identification in rotors integrated with active magnetic bearings. Journal of Vibration and Control, 23(6):980–1000, 2017. doi: 10.1177/1077546315587146.
  • [22] S. Singh and R. Tiwari. Model-based switching-crack identification in a Jeffcott rotor with an offset disk integrated with an active magnetic bearing. Journal of Dynamic Systems, Measurement, and Control, 138(3):031006, 2016. doi: 10.1115/1.4032292.
  • [23] S. Singh and R. Tiwari. Model based identification of crack and bearing dynamic parameters in flexible rotor systems supported with an auxiliary active magnetic bearing. Mechanism and Machine Theory, 122:292–307, 2018. doi: 10.1016/j.mechmachtheory.2018.01.006.
  • [24] C. Shravankumar. Crack Identific in Rotors with Full-Spectrum. Ph.D. Thesis, IIT Guwahati, India, 2014.
  • [25] A. D. Dimarogonas. Vibration of cracked structures: a state of the art review. Engineering Fracture Mechanics, 55(5):831–857, 1996. doi: 10.1016/0013-7944(94)00175-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-048356c1-c491-4ca5-906f-2741c30ae1ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.