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Abstract 

The time-sensitivity of large marine data files over a communication network necessitates accu­
rate simulative prediction of the file transfer performance. Careful data traffic modelling is required 
to fit the actual traffic characteristics for subsequent generation of synthetic traffic traces and feeding 
them into a simulation model. Classical models have recently proved inadequate due to the discovery 
of self-similarity (fractal behaviour) in data traffic. This paper attempts to systematise the mathemati­
cal background of self-similarity and the ways it manifests itself in stochastic processes modelling 
data traffic. Relevance of self-similarity to traffic description and measurements is discussed. Results 
of a research effort at the Department of Marine Electronics of the Maritime Institute in Gdansk are 
described, which focus on the development of a software tool for detection and quantification of self­
-similarity in observed or synthetically generated data traffic. 

1. Motivation 

Within the HIROMB (High Resolution Operational Model of the Baltic Sea) project [5] , 
cyclic transfer of large sets of marine data between Swedish Meteorological and Hydro­
logical Institute and the Maritime Institute in Gdansk takes place using the FTP services of 
the TCPIIP Internet. The files involved are on order of a few Mbytes in size and contain 
frequently updated data, with an update cycle on order of hours. It is critical for the HI­
ROMB activity that they reach their destination in time to be processed before the next 
update. In reality, transfer delays are often close to or beyond the resulting deadlines, some 
transfers never completing successfully. Given unpredictable but generally heavy back­
ground traffic along the route in question, and the fact that FrP does not offer any QoS 
(quality of service) guarantee, this raises the issue of meeting quasi-real-time requirements 
in a best-effort communication environment. Accurate prediction of the file transfer per­
formance calls for a simulation project incorporating detailed knowledge about the en­
countered traffic conditions and aimed at 
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• evaluation of the performance capability in the present connection configuration, 

• recommending optimum file sizes, compression and formatting, as well as optimum 
transfer modes e.g., parallel transfers, 

• projection of performance in view of expected connection reconfigurations and traffic 
mcrease, 

• comparison of various options as to the future choice of the network service provider 
e.g., TCP/IP versus Frame Relay, ISDN etc. 

A number of ready-made software tools for performance evaluation are currently avail­
able, among them CACI's COMNET III® simulator package whose advantages include a 
user-friendly graphical simulation model creator and the possibility of feeding traces of 
actually recorded traffic into the created simulation models. The following phasing of the 
project thus naturally emerges: 

1. measurement and parameter estimation of actual network data traffic, 

2. traffic modelling to fit the actual traffic characteristics for subsequent generation of 
synthetic traffic traces, and 

3. feeding the generated traffic traces into a simulation model reflecting the assumed 
route of the file transfer. 

This work is primarily concerned with phase 1 and motivated by the fact, extensively 
reported in recent literature, that classical traffic models (based on Poisson, Markovian, 
renewal, ARMA processes etc.) have proved inadequate for today's data traffic description. 
Their failure is mainly due to the occurrence of the so-called self-similarity or fractal be­
haviour in data traffic, a statistical phenomenon long since discovered in some hydrological 
or economic processes, but only recently recognised in a telecommunication context. Un­
derstanding self-similar data traffic and statistical estimation of its parameters is thus a 
prerequisite for realistic traffic modelling and subsequent simulation. In the sequel, based 
on an extensive survey of current research world-wide, an attempt is made to systematise 
the mathematical background of self-similarity and the ways it manifests itself in stochastic 
processes modelling data traffic. Next, relevance of self-similarity to traffic description and 
measurements is discussed. Finally, some results of a research effort at the Department of 
Marine Electronics of the Maritime Institute in Gdansk are described, which focus on the 
development of a software tool for detection and quantification of self-similarity in ob­
served or synthetically generated data traffic. 

2. Mathematical background 

In this section, the notions of "self-similarity," "fractal" and "long-range dependence" in 
the context of data traffic in communication networks will be briefly explained in terms of 
the theory of stochastic processes, with an emphasis upon peculiar scaling behaviour when 
moving from small to larger time scales. Since fractals are geometrical objects that seem to 
appeal to the human mind through intuitions they defy rather than agree with, the stochasti­
cally counterintuitive behaviour of self-similar data traffic will also be pointed out in a 
subsequent section for better understanding. 

Data traffic observed (actually or conceptually) at some measurement location can be 
thought of as a succession of arrivals of data units, hereafter called PDUs for Protocol Data 
Units, each carrying a number of bytes. We shall only be interested in the byte volume of 
the traffic, meaning that PDUs will not be classified by contents, protocol type, source/ 
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destination addresses etc. A suitable mathematical model is that of a realisation (sampk 
path) of a stochastic process, with at least three settings possible, to be chosen from as 
computational convenience dictates. On the left in Fig. 1, only the PDU arrival epochs are 
marked thus constituting a one-dimensional point process; weights can possibly be attached 
to points to record the byte volume. In the middle, a discrete setting is displayed where the 
time axis is divided into slots of equal size and a time series (Xr. t = 0, 1, 2, .. . ) is defined so 
that the random variable X, represents the total number of bytes in the tth slot. A continuous 
setting shown on the right is sometimes easier to handle analytically, with the process (Xr. t 

E R+) representing momentary traffic rate variation in time, a limiting case of the former 
time series as the slot size tends to 0. The X,'s can also be viewed as increments of the ac-

cumulated traffic process defined as Y, = L.;=O X; or Y, = J~ X .,du for the discrete and con­

tinuous setting, respectively. 
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Fig. I. Point process, discrete and continuous settings of data traffic 

Although data traffic is in general non-stationary over a large time scale (e.g., due to di­
urnal cycles of users' activity, network reconfiguration or breakdowns), it will be further 
considered on at most hour-long time scales and assumed to be covariance stationary i.e., 
the marginal probability distribution of X, is assumed to be time-invariant and the autoco­
variance only a function of the time lag: 

Cov{Xr. Xr+u } = E{ X r X r+u } = p(u) 

(X denotes the centred version of a random variable X). Moving between different time 
scales is equivalent to the operation of traffic aggregation defined as 

y Cm) = y 
t mu 

(1) 

(2) 

where m, a positive real number or a positive integer depending on the setting, is called the 
level of aggregation. Indeed, as m gets larger, so does the underlying time scale since the 
increments of Y, are calculated over larger time intervals (i .e., larger blocks of data) : 

mr m(r+t.t) 

x,<ml = LX; or xim) = f Xudu . (3) 
i=m(r-1)+1 mt 

• 
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The association of a class of stochastic processes with fractals stems from scaling con­
siderations. A fractal is ordinarily described as a geometrical object any part of which 
somehow resembles the whole upon scaling [ 17]. Such a form of topological self-similarity 
is formally expressed as there existing some exact affine transformation which maps any 
part F' of a fractal F directly onto F. [ 4] notes that stochastic self-similarity is a weaker 
version than its topological counterpart in that the existence of an exact transformation is 
not required. However, stochastic self-similarity can be quantified based on the theory of 
H-stable probability distributions. Namely, dropping the subscript t for clarity and assum­

ing for the moment that X (m) is centred, either the distribution of X (m) is H-stable or it is 
attracted by some H-stable distribution, meaning that,respectively, 

D 
m -H X (m) =X for all m > 0 or m -H X (m) ~X * as m -t oo (4) 

where H :<:: 0.5, X* is a limit random variable with a H-stable distribution and the D marks 
equality and asymptotic equality in the distributive sense. Informally, (4) expresses a pecu­
liar form of scaling and thus stochastic self-similarity, and standard definitions [2,9] ac­
cordingly distinguish between exact and asymptotic self-similarity, H being called the Hurst 
parameter for historical reasons 1

• Although (4) implies that all distributions are asymptoti­
cally self-similar, we note that not all values of H lead to the departure from classical traffic 
models e.g., most known distributions are attracted to the normal distribution with H = 0.5 
by virtue of the Central Limit Theorem. Self-similar behaviour becomes interesting for H > 
0.5 i.e. , when the involved distributions seem not to adhere to the Central Limit Theorem. 
A stochastic process X, is said to be self-similar (or fractal) if the equality in (4) extends to 
all its finite-dimensional probability distributions and second-order self-similar (fractal) if 
it is confined to two-dimensional distributions only. 

Many traffic statistics exhibit scaling as in (4); especially studying variances is fruitful 
since it gives insight into the "internal structure" of self-similarity [15] . Taking the continu­
ous setting we have from (1)-(3) the variance of the aggregated accumulated traffic: 

mt U 

Var{Y,Cm>} = 2mt J (1- -)p(u)du 
0 mt 

(5) 

and we see that its asymptotic form (as m -t 0) is decided by the integrability of p(-). 

Namely, if fo p(u)du < oo (meaning non-correlated traffic rates that are sufficiently far 

apart in time) then, regardless of p(·) , 

(6) 

(-stands for asymptotic equality). On the other hand, take p(u) = ¢(u)·u', where¢(·) is an 
asymptotically constant function and r e ( -1 ,0), meaning strongly correlated traffic rates 
that are considerably far apart in time. Then 

Var{m-(r+2)12 Y,Cm) }- Var{Y
1
}- t'+2 , (7) 

which states self-similarity with the Hurst parameter H = (r+2)!2 e (0.5, 1). Consequently, 
asymptotic self-similarity with H > 0.5 and asymptotic power-law decay of p(·) are closely 
connected. 

1 After H.E. Hurst who, almost half a century ago, discovered self-similarity phenomena in certain natural 
processes. 
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3. Self-similarity manifestations and related intuitions 

Self-similarity with Hurst parameter H > 0.5 (also termed the Joseph effect after [10]) 
manifests itself in a number of ways, both stochastically and geometrically (in particular, 
visually). Careful analysis of these manifestations leads to the formulation of various crite­
ria of self-similarity, equivalent to one another in that they are indicative of the same phe­
nomenon, although it is argued [21] that they differ subtly in mathematical content. 

3.1 Visual manifestations 

The most obvious for the naked eye is the so-called pictorial proof of self-similarity [9] 

which consists in plotting the realisations (sample paths) of X iml for a range of levels of 

aggregation, m. To verify that traffic self-similarity is not unique to the measurements pre­
sented in the literature [1,9,12,20], an ad-hoc measurement experiment on an Ethernet LAN 
segment was carried out; generic plots obtained therefrom are depicted in the left column of 
Fig. 2. The original byte volume readouts were taken at 10 ms intervals (10 ms slot size) 
and subsequent aggregation produced 100 ms, 1 s, 10 sand 100 s slot sizes corresponding 
tom= 101

, 102
, 103 and 104

• The sample path at the bottom left almost captures individual 
PDU arrivals and predictably exhibits high burstiness typical of multi-user data traffic. It is 
nevertheless visibly smoother than a Poisson process on the same time scale appearing at 
the bottom right, produced from a synthetic trace of a software traffic generator. As m in­
creases, moving toward larger time scales, the burstiness does not vanish in the actual traf­
fic and shows even on the uppermost minutes-long time scale, whereas it does vanish in the 
Poisson traffic (right column). Thus apart from the time scale, the upper plot appears indis­
tinguishable from the ones beneath, a fact contradicting the intuition based on the law of 
large numbers. Suggestive ways of expressing this fact include statements like "data traffic 
is bursty over several time scales" [12], "there is no natural burst size" [4], "traffic 'spikes' 
ride on longer-term 'ripples ' which in turn ride on still longer-term 'swells'" [14] or "the 
presence of cycles of all frequencies and orders of magnitude displays features suggestive 
of non-stationarity" [8]. 

3.2 Stochastic manifestations 

Stochastically, the most striking in self-similar traffic with H > 0.5 is its non-degenerate 
correlation structure despite increasing the level of aggregation, a feature referred to as 
long-range dependence and shown in Sec. 2 to entail power-law decay of the autocova-

riance function . Specifically, denoting by p<ml(-) the autocovariance function of X1<ml, we 

observe for an asymptotically self-similar process that 

p<'"\u) ~ t/>(u)·u2H-2 (8) 

as m ~ oo .
2 Long-range dependence is reflected by the spectral density of X1 (the Fourier 

transform of p(-)) being divergent at the origin, the asymptotic expression near the origin 
again having a power-law form 

S( m) - (1/ m)2H-I. (9) 

2 Recalling the form of p(·) assumed earlier, we conclude that for sufficiently large m, p<'"1(u)- p(u) as u -7 

oo , which again justifies the term "asymptotic second-order self-similarity". For an exactly second-order self­
-similar process, p<"'1(u) = [(u + llH- 2u2H + lu -112H]/2. Such a process is hard to come across in practice, but 
often serves as a reference model e.g., the Fractional Gaussian Noise [2,5,15]. 
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"Fig. 2. Pictorial proof of traffic self-similarity (source: ad-hoc Ethernet LAN measurement) 

This is termed the 1/f noise effect. Another name self-similarity sometimes goes by is 
slowly-decaying variance, an effect already demonstrated in Sec. 2, but rewritten more 
convincingly in the form 

Var{ Y/m) I m}- mm-2 (10) 
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·as m ~ oo; the variance thus decays more slowly than 1/m. All the effects just described 
remain in sharp contrast with the intuition based on classical traffic models and observa­
tions (e.g., of telephone and early data network traffic) which exhibit 

• short-range dependence, reflected by an integrable autocovariance function tending to 
that of a pure white noise as m ~ oo i.e., p <ml(u) ~ 0 for all u "# 0, 

• finite spectral density at the origin, and 

• Var{ Y?'l I m } decaying as 1/m. 

Yet another stochastic manifestation of self-similarity is produced by fitting the so­
called ON-OFF traffic model to the point process representing individual PDU arrivals over 
time. Because data traffic is bursty in nature, PDU arrivals tend to cluster into PDU trains 
(or ON-periods) , separated by idle intertrain intervals (or OFF-periods), both of variable 
length. It was noted long ago [ 10] that self-similarity and long-range dependence are tightly 
related to the probability distributions of the ON- and OFF-period lengths exhibiting 
power-law decay (or, to use a more descriptive term, having heavy tails) . An example is the 
Pareto distribution: 

Pr[ONIOFF length< x] = 1 - (clx)b (11) 

with b, c;::: 0 and x;::: c; band care the shape and location parameters, respectively. If b::; 2 
then the Pareto distribution has infinite variance and if b ::; 1, infinite mean as well. The fact 
that observed data traffic fits the Pareto ON-OFF model with b ::; 2 gives rise to the term 
infinite variance syndrome, also called the Noah effect, after [10] (see also [19,21]). It 
might appear at first glance that, since the delimitation of PDU train and intertrain intervals 
in a bursty point process is to some extent arbitrary (it results from superimposing the ON­
-OFF model rather than from the process ' internal mechanisms), the probability distribu­
tions of the ON- and OFF-period lengths should critically depend on how a PDU train is 
defined. E.g., one might decide that a minimum of L1 s without PDU arrivals constitutes an 
intertrain interval , PDU trains being thus dete~mined unequivocally. The Noah effect, how­
ever, turns out largely insensitive to the threshold L1 due to a unique property of the Pareto 
distribution, called in variance under truncation from below [ 14]. It states that conditioning 
the Pareto distribution Pr[l < x] on I ;::: y leaves the distribution unchanged except for y 
becoming the new location parameter. As a consequence, it may be shown that £{OFF 
length} is independent of L1 [21] whereas 

£{ON length} = o(L1) (12) 

forb < 2,with o(L1) defined by o(L1)/L1 ~ 0 as L1 ~ 0 [14] . Note that common intuition 
based on finite-variance distributions dictates that E{ON length} should be proportional to 
L1, which is true for b ;::: 2. In fact, the PDU train lengths do grow with L1, but only very 
slowly, while the intertrain lengths do not at all, causing the traffic to retain its apparent 
burstiness over many time scales. The connection between Pareto distributions and self­
-similarity is further confirmed by a key theorem [ 19] stating that a superposition of suffi­
ciently many processes fitting the Pareto ON-OFF model with possibly distinct shape pa­
rameters b1 and b2 for the ON- and OFF-periods .converges to an exactly self-similar proc-
ess with -

(13) 

Table 1 below summarises the stochastic manifestations of asymptotic self-similarity 
with Hurst parameter H. 

-
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Table l. Stochastic manifestations of self-similarity 

Manifestation 
Statistical measure 

Relation to the Hurst parameter involved 

Joseph effect Probability distribution m-Hx<m)~X* 

Long-range dependence Autocovariance function p(u) - u 
2H-2 

lifnoise effect Spectral density S( w) - (II w)2H-I 

Slowly-decaying vari- Variance of accumulated Var{ Y/m) I m } - mw-z 
ance traffic 

Noah effect (infinite PDU trainlintertrain Pareto with shape parameters b1. b2 

variance syndrome) length distribution s.t. H = (3- min{b!> b2})/2 

3.3 Geometrical manifestations 

Sample paths of momentary traffic rate or collections of PDU arrival epochs on the time 
axis can be mapped onto geometrical objects whose fractal properties can be investigated 
based on topological notions. Leaving sample paths out for the moment (cf. Higuchi's 
method in Sec. 6), we shall touch on two measures related to the correlation structure in the 
point process setting: the coincidence rate [ 17] and correlation dimension [3]. Both attempt 
to establish how densely the point process fills the space it is embedded in (i .e., the time 
axis). The coincidence rate, given by 

( )
_

1
. Pr[PDUarrivals in(0,8)and(u,u+8)] 

g u - lmo ..... o 2 
. 8 

(14) 

is akin to the autocovariance function and is known to scale as u<l'-1 for self-similar pro­
cesses, a e (0, 1) being called the fractal exponent of the process. The correlation dimen­
sion is derived from a set of PDU arrival epochs by calculating the proportion of pairs of 
epochs that are u seconds apart or less. For self-similar processes it is known to scale as ua 
over a range of time scales, where a is the correlation dimension. For more analysis of 
geometrical measures see [6] . 

4. Relevance of self-similarity to understanding data traffic 

Understanding the nature of data traffic is important both from the network designer's 
perspective, for proper dimensioning of the network resources the traffic is to be handled 
by, and from the user's perspective (essential in the present work), for proper prediction of 
performance of a planned activity on the network e.g., a series of time-sensitive large file 
transfers. To paraphrase [.12], understanding data traffic has two possible levels: 

• Concrete causal (or microscopic), whereby one thinks of individual events like file 
transfers, interactive sessions etc. and builds a traffic model by aggregation of the 
event models, and 

• Abstract statistical (or macroscopic), whereby one seeks a stochastic traffic model that 
fits some relevant aggregate statistics without worrying about its consistence with the 
individual event models . 
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Because of the multitude of individual events that would have to be kept track of, and be­
cause the stochastic paradigm has been so entrenched within the data traffic research com­
munity, macroscopic understanding tends to prevail. It is somewhat ironical, then, that the 
initial resistance toward self-similar traffic models used microscopic arguments. [21] 
quotes two questions that stood in the way, concerning the lack of a "physical" explanation 
for the observed traffic self-similarity and its unclear impact on queuing processes within 
the network. Both questions, it may be conjectured, stemmed from the long-lived tradition 
of measuring data traffic either on very small time scales (to track individual PDUs) or very 
large ones (to determine average resource utilisation e.g., to fix tariffs), where the medium­
-term correlation structure remained invisible. Over time, the opposition subsided faced 
with hard empirical evidence including surprisingly poor performance at relatively low 
traffic rates and highly irregular timing of PDU losses due to resource overflow, both phe­
nomena now attributed to traffic self-similarity. As argued in [4], any realistic traffic model 
of today should incorporate self-similarity or long-range dependence or heavy-tailedness of 
PDU train/intertrain distribution, or all the three. 

Conflicting views exist as to whether and why self-similar traffic models should be 
given attention, cf. [7 ,8,12,16]. However, three aspects of self-similarity seem to safeguard 
its future role: accuracy of statistical inference, parsimonious traffic modelling and queue 
distribution tail behaviour. 

4.1 Accuracy of statistical inference 

Not taking proper account of self-similarity phenomena may prove disastrous in classi­
cal significance tests and confidence interval assessment. Cases are known where sampling 
errors obtained for conventional traffic models are wrong by a factor that tends to infinity 
as the sample size increases [8] . A similar point can be made using standard estimation 

arguments. Consider the mean traffic rate A.= E{X,} whose straightforward estimator is A 
= E{ Y,}IT (Tis the observation period). It is unbiased and, as seen from Table 1, 

Var{ A } = CT 2
H-

2
• (15) 

For accuracy, one needs to keep the coefficient of variation of A below a threshold c, 
which in turn requires 

T> 1-~)C k . (16) 

Unfortunately, the right-hand side of (16) grows very quickly as H ~ 1; e.g., for values 
typical of a LAN segment traffic (C = 4·10 11 bit·s, A.= 2·106 bit/s) and a moderate accuracy 
E = 10%, one requires T > 5 minutes if H = 0.8, but T > 27 hours at H = 0.9. Such large 
observation periods are certain to encompass diurnal non-stationarities thus discrediting any 
statistical inference geared to covariance stationary processes. 

Proximity of the Hurst parameter to 1 also proves dangerous to the estimator of the 
momentary traffic rate variance. Based on the Fractional Gaussian Noise model and as­
suming that N samples of X, are taken over the observation period, it follows that the esti­
mator is biased this time, the bias vanishing slowly with N (in fact, as Nw-2 [15]) . Fig. 3 
illustrates that the number of samples required to keep the bias under any given level grows 
dramatically with H; for large H, at least one realisation of X, is likely to occur for which 
the variance estimator is meaningless even for large N. 
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Fig. 3. Estimator bias of the momentary traffic rate variance [ 15] 

4.2 Parsimonious traffic modelling 

Generation of synthetic traces of traffic based on specific self-similar traffic models 
plays a role in performance-oriented computer network simulation. Markovian traffic mo­
dels were extensively used for telephone and early data network traffic and were succes­
sively enriched as WWW, multimedia and interactive traffic was beginning to dominate (cf. 
ARMA, MMPP and Markov-modulated ON-OFF source models [15]). Their increased 
sophistication, meant to capture the behaviour of individual traffic components, was not 
unlike approximating a hyperbolic function by a sum of exponential ones [8]: it involves 
prohibitively many parameters whose "physical" interpretation becomes impossible. 
Meanwhile, the traffic descriptor that the models were to fit (consisting of classical mea­
sures like the peak-to-mean ratio) was becoming a problem in itself. E.g., [8] cites LAN 
traffic measurement data where the peak-to-mean ratio varies from 150 in any 5 ms interval 
to over 700 in any 5 s interval, making it an entirely unrepresentative measure. 

Applying the self-similarity apparatus instead reduces the number of correlation-capturing pa­
rameters to just one- the Hurst parameter, measuring the degree of asymptotic self-similarity (asH 
increases from 0.5 to 1, so does the process' asymptotic self-correlation, from a pure noise to al­
most deterministic). This enables parsimonious modelling whereby the multitude of parameters 
reflecting individual traffic components is replaced by a few parameters, much in the spirit of 
macroscopic understanding. A suitable traffic descriptor has been proposed based on the following 
expression for the autocovariance function of a fractal point process [ 17] 

2H-l 
p<ml(u) = C m ·U2H-2 

r2H-I +m2H-l 
(17) 

where C and rare constants, the latter being called the fractal onset time and marking the 
lower limit of significant power-law decay of the autocovariance function. The traffic is 
fully specified by the triple (It, H, r) . 
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4.3 Queue distribution tail behaviour 

While the discovery of self-similarity in data traffic was of great cognitive value and the chal­
lenging task of testing for self-similarity opened up an interesting field of statistical research, a truly 
practical question regards the impact upon the expected network performance. PDU delays and 
losses, which subsequently cause the flow and congestion control mechanisms to throttle the user­
perceived throughput, are incurred in a series of queues the traffic encounters at the access control 
and switching elements on its way from source to destination. A generic FIFO queuing system fed 
by long-range dependent traffic is known to behave differently from one with non-correlated (e.g., 
Poissonian) input traffic in that very long queues and resulting PDU losses seem abnormally fre­
quent. One way of quantifying this fact is to plot the complementary probability distribution func­
tion of the queue length i.e., the probability that the queue exceeds a given threshold as a function 
of the threshold. A typical curve obtained by feeding a trace of actual long-range dependent traffic 
is shown in Fig. 4. Compared with the non-correlated input case (the dashed curve) it exhibits an 
uncomfortably heavy tail- according to some analyses, governed by the Weibullian distribution 
[12] . To prevent suspicions that this heavy-tailedness might have arisen due to a specific marginal 
distribution at the input, the trace was subsequently shuffied (to remove the long-range dependence 
while retaining the marginal distribution) and again fed into the queue, producing the dotted curve 
that almost coincides with the dashed one. Another uncomfortable fact is that, since a FIFO queue 
behaves like a low-pass filter [11], there is little chance for the traffic to lose its long-range depend­
ence as it passes successive queues. On the other hand, some authors argue [ 12] or even demon­
strate via simulation [7] that the flow and congestion control mechanisms within the network may 
act to suppress the traffic self-similarity to some extent. 

5. Qualitative self-similarity assessment 

Self-similarity in data traffic would not have been discovered without a surge of mas­
sive traffic measurement projects ftrst undertaken at the beginning of the present decade. It 
was only upon analysing very long traces of observed traffic that the inadequacy of such 
classical measures as the peak-to-mean ratio, short-term variance [1], indices of dispersion 
for counts and intervals [ ll] etc. for capturing long-range dependence became apparent. 
The main findings so far include: 
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Fig. 4. Effect of self-similarity upon queuing performance [l] 

I 



40 J. Konarski 

• PDUs related to TELNET activity on the Internet form very different arrival processes 
depending on whether they carry session requests or intra-session data; the former are Pois­
son whereas the latter exhibit the Noah effect [14] (similar conclusions pertain to FTP traf­
fic). Some traces of multi-protocol (all-TCP) traffic fit the Fractional Gaussian Noise 
model. 

• Both internal and external Ethernet LAN traffic is self-similar with the Hurst parameter in 
the range (0.7, 0.95) as computed from ca. 30-minute traces. Most surprisingly, H tends to 
increase with the mean traffic rate i.e., as more traffic components superpose [9], contrary 
to the common intuition that traffic superposition has a "smoothing" effect. 

• WWW traffic measurements over time scales of 1 s or larger yield H significantly greater 
than 0.5 (mostly between 0.75 and 0.85); self-similarity is more pronounced on backbone 
links shared by many source-destination pairs and seems to be related to the distribution of 
transferred file sizes being heavy-tailed [2] . 

• Several-minute measurements on a 155 Mbitls ATM-based WAN reveal H = 0.7 as well as 
certain robustness of self-similarity despite attempts to remove it by traffic shaping [ 11]. 

• Self-similarity and the infinite variance syndrome have also been detected in most types of 
networks other than the Internet e.g., ISDN and CCSN (using the SS7 signalling system) [3] . 

While the methodology of traffic measurement is relatively simple except that below­
-millisecond timing accuracy is necessary (an output trace simply records the arrival epochs 
and byte volumes of successive PDUs), the detection and quantification of self-similarity is 
challenging. The Joseph, Noah etc. effects are but idealisations (not unlike the Markov 
process) never to be fully validated in finite data [21] -even an imperfect validation should 
involve very large data sets. Rigorous point estimation may, at a high computational cost, 
yield conclusions hard to benefit from (e.g., "the shape parameter of the PDU train distri­
bution is 2.0 ± 0.05"). Consequently, besides point estimation, some data-intensive methods 
have been developed that rely more on visual than quantitative assessment. They include 
sample path assessment, textured plots and log-moment generating functions. 

5.1 Sample path assessment 

By plotting the sample paths of a self-similar process over many time scales, just like in 
Fig. 2, and using analogous plots of Markovian traffic for reference, one may attempt to 
visually assess the degree of self-similarity at which the Markovian and self-similar traffic 
begin to look the same. E.g., in [13], traffic self-similarity on a backbone link was found to 
be induced by the transferred file size distribution being Pareto with the shape parameter 
b ::;; 2; visual assessment helped to determine b = 1.95 as the limit beyond which the two 
types of traffic were indistinguishable. 

5.2 Textured plots 

Recall that the delimitation of PDU train and intertrain intervals in the ON-OFF model 
of a point process is largely a matter of convention. To visually assess the appropriateness 
of the Pareto ON-OFF model (i .e., to verify that ON- and OFF periods can indeed be d.is­
tinguished), one constructs a textured plot [19,21], which turns the one-dimensional time 
axis into a dotted strip, each PDU arrival epoch being marked by a dot and displaced verti­
cally by a random amount within the strip. If the time scale is large enough and the Pareto 
ON-OFF model does fit the observed traffic, one gets a characteristic striped texture 
sketched in Fig. 5. As noted in [19], this type of texture is much less likely to appear for 
Markovian (exponential ON-OFF) traffic. 
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time 

Fig. 5. A typical texture plot for Pareto ON-OFF traffic 

5.3 Log-moment generating functions 

The detection of self-similarity or long-range dependence in the observed traffic using 
correlation or spectral measures alone gives little insight into the performance impact it 
would have when fed into a FIFO queue: queuing theory has always been more oriented 
toward the workload input rate than its spectral characteristic. A combination of spectral 
and workload characterisation of data traffic has been proposed [20] using the discrete 
setting and the log-moment generating function: 

G
(m) logE { exp( roX 

1
(m))} 

( ro) = --=.__c___:_:....__.:.........c..c... (18) 
rom 

As before, the level of aggregation m determines the time scale used (e.g., m = 1, 2, 4, 8, 
.. . ), whereas the variable ro (e.g., ro = ... , w-1, 10°, 101

, ••• ) acts as a weighting of measure­

ment between that of the mean and maximum traffic rate. Indeed, c <ml(ro) ~ E{ X1(m) }/m 

as (J) ~ 0 and c <ml( ro) ~ E{ sup X /m) }/m as ro ~ oo. Despite its quantifying potential, (18) 

only offers qualitative detection of self-similarity - by assessment of shapes. Namely, the 
shape of the two-dimensional surface c <ml(ro) over the (m, ro)-plane, in particular that part 
of it above the constant plane corresponding to the queue's service rate, has been shown to 
differ qualitatively for self-similar and Markovian traffic. 

6. Point estimation of self-similarity-related parameters 

Point estimates of the Hurst parameter can be obtained either directly, using one of the 
methods described below, or indirectly, via the assessment of shape parameters b of heavy 
tails in superposing traffic components. The latter ordinarily follows by plotting the com­
plementary probability distribution function of the observed PDU trainlintertrain lengths on 
a log-log scale and looking for asymptotically linear behaviour [2,21]. A least squares fit 
then produces a straight line whose slope is equal to -b. To verify how much of the data 
variability is explained by the Pareto power-law decay, calculation of the relative variance 
of error (the R2 statistic) is recommended. Repeated analysis of independent traffic traces 
permits to compute the confidence intervals forb, if necessary. 

Alternatively, the Hill estimator of b can be computed from the set of observed PDU 
train/intertrain lengths {/(, ... ,IN} as 

-
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(19) 

and plotted against k (the Hill plot [21]), where /(J) is the/' order statistic in the set {11, .•• ,IN} 
and k E (1, N) is the number of the lowest-order statistics taken. For a heavy-tailed PDU 
train!intertrain distribution, the Hill plot initially varies considerably with k to level off for 
large k, whereas in the case of an exponential tail it continues to decrease with k. Confidence 
intervals can be computed using independent traces or the asymptotic normality property of 
the Hill estimator. 

Two points are worth making when estimating the Hurst parameter directly. First, having 
obtained an H-estimate close to I (or whose 95% confidence intervals covers I) one should 
check if the apparent self-similarity is genuine and not induced by some hidden deterministic 
mechanisms [9]. Second, H-estimates obtained from non-overlapping blocks of the same trace 
may differ significantly and it is important to decide whether this variability is due to random­
ness or to the traffic non-stationarity (a suitable l-like test has been developed [8]). 

The following methods of the Hurst parameter estimation assume that the observed traffic is 
at least covariance-stationary (cf. [2,11,15]). Except for Whittle's method, all of them lead to 
power-law plots of specific statistics against the level of aggregation, m, with an exponent de­
pendent on H. Therefore, H follows from a least squares fit to the corresponding log-log plot. 
Discrete setting is assumed throughout, X" ... , XN being as before the observed samples of the 
traffic rate. Formulae (2) and (3) apply too. 

6.1 Time-domain methods 

The samples of the momentary traffic rate can be used in many ways to construct meaning­

ful m-sensitive statistics. To obtain a variance-time plot, one estimates Var{ Ximl }: 

V (m) =_I _ ""::<ml (x (m) \2 _(X (m) \2 
N'(m) ~r-1 r } \ J (20) 

for increasing m (as long as m « N), where N'(m) = L N I m j and X (m) = N'~m) I;::,cml X ,<ml . 

By (10), y<ml- m2H-z (a slope of -I on the log-log plot indicates the absence of self-similarity). 

More generally, the empirical kth central absolute moment of Ximl scales as mk(H-1). A related 

measure called the Index of Dispersion for Counts (IDC), essentially an estimate of 

Var{ Ximl }/E{ X
1
(ml }, scales as m2H-t. Another statistic, proposed in Higuchi's method, is the 

sample path length estimator: 

LN'(m,t) ly Y I 
L (m) = N -! ""' n=l t+nm- t+(n-l)m (2 !) 

m3 ~r=l N"(m,t) 

known to scale as m2
-H (where N"(m,t) = L<N- t)l m j and the exponent is called the frac­

tal dimension of the process X,). Yet another interesting method consists in applying a least 
squares fit to m-long parts of the sample path of Y, and estimating the minimum mean 
square error. For a class of self-similar processes, this error scales as m2

H. Finally, we men­
tion the rescaled adjusted range (RIS) statistic, the most historic of all (instrumental in the 
discovery by H.E. Hurst). First, RIS(m) is calculated for m ~ N as the diameter of the set 
{.1Y" ... , L1Ym}, where L1Y, is the deviation of the accumulated traffic process Y, from its 
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estimated mean, normalised w.r.t. the standard error estimate from {X1, ... , X1}. Next, using 
a number of non-overlapping sample series X" ... , XN (possibly successive blocks of ob­
served samples), an estimate of E{RIS(m)} is computed, known to scale as mH. 

6.2 Periodogram-based methods 

By (9), the Hurst parameter can be deduced from the spectral density estimate, or sam­
ple periodogram, of X" .. . , X,v plotted against frequency near the origin. In practice, a least 
squares fit to the periodogram is biased toward higher frequencies (frequencies tend to 
"gravitate to the right" on a log scale); accordingly, modifications of the periodogram 
method are proposed e.g., the periodogram is first averaged over equal-size intervals on the 
log-frequency scale or the frequency range for the least squares fit is cut off close to the 
origin. The resulting H-estimates are nevertheless criticised for often being inaccurate. 

Whittle's estimator is of maximum-likelihood type, where the process X1 presumably 
matches a family of self-similar model processes parameterised by the values of H e.g., 
FARIMA(p, d, q) or Fractional Gaussian Noise [8,18], and the resulting H-estimate is the 
one that gives the best match. Whittle's integral, given by 

W(H) = j ,S(w) dw, 
-11: S (W, H) 

(22) 

serves as the match criterion (subject to minimisation), with S(-) denoting the sample perio­
dogram and S'(·, H) the model process' spectral density e.g., S'(w, H) = [2sin(cd2r<2H-Il/2rr 
for FARIMA(O, d, 0), where d = H- 0.5. 

7. Self-similarity detection using TSA 

In order to develop a tool for data traffic analysis geared to self-similarity, a research 
project was undertaken at the Department of Marine Electronics of the Maritime Institute in 
Gdansk, with the aim to 

• adapt the available UNIX software and conduct measurements to produce traces of 
actual data traffic on a 10 Mbit/s LAN segment, and 

• implement a number of the above methods of the Hurst parameter estimation in a sin-
gle software package to obtain H-estimates for the measured traffic. 

The software package, called TSA for Time Series Analysis, was written in Visual C++ as 
an MDI application for Windows NT. Its main functions include 

• import of observed or synthetic (software-generated) traffic traces as text files , 

• sampling the imported traces to produce X 1(m) with various levels of aggregation, 

• computation of marginal distributions and autocovariance functions, 

• computation of variance-time, R/S and IDC plots, periodograms and Whittle's inte­
grals, and creation of the corresponding log-log plots, 

• application of least square fits to the log-log plots or parts thereof along with the com­
putation of R2

, and 

• shuffling the imported traces by rearranging blocks of data in a random order to re­
move long-range dependence. 
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Using the pcap library, a separate program was written to record the data traffic at a speci­
fied network interface and output a trace file. A few dozens of measurement experiments 
were conducted, each resulting in an approximately 20-Mbyte file (corresponding to a little 
less than 90 minutes of traffic), of which a March 30, 1999, file was selected for further 
analysis. As a reference, a synthetic Poisson traffic trace was produced and verified to yield 
H-estimates about 0.5 . 

The marginal distribution of the measured traffic, displayed in Fig. 6, differs noticeably 
from Poissonian; the implied mean traffic rate is about 1 Mbit/s amounting to 10% of the 
available bandwidth. Fig. 7 shows the log-log variance-time plot and the range of time 
scales for which a least aquares fit was applied yielding a slope of -0.186. This corresponds 
to H = 0.907 (R2 = 0.95). The limiting time scales were chosen so as to disregard the short­
range dependence on the one hand and avoid the inaccuracy due to too few samples of 

y,<m> on the other. A least squares fit applied to the RJS statistic (Fig. 8) yields H = 0.890 

(R2 = 0.97) and when applied to the IDC plot for the range of time scales shown in Fig. 9, 
H = 0.921 (R2 = 0.99). Two periodogram-based methods, the periodogram plot (Fig. 10) 
and Whittle's method (Fig. 11) yield H = 0.850 (R2 = 0.76) and H = 0.860, respectively. In 
the latter, Whittle's integral is plotted against d using FARIMA(O, d, 0) [18] as the reference 
self-similar traffic model, yielding a minimum at d = 0.360. 

In spite of some discrepancies between the obtained H-estimates, the analysed traffic 
can safely be regarded as self-similar with H somewhere in the range (0.85, 0.92) (note the 
high degree of self-similarity at a relatively low mean traffic rate). Thus LAN traffic traces, 
verified to be self-similar by the TSA tool, can serve as the input traffic in computer simu­
lation models geared to the prediction of performance of large file transfer in realistic traf­
fic conditions. 
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