Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the study was to create an accurate method of automated subcutaneous (SAT) and visceral (VAT) adipose tissue detection basing on three-dimensional (3D) computed tomography (CT) scans. One hundred and forty abdominal CT examinations were analysed. An algorithm for automated detection of SAT and VAT consisted of following steps: thresholding of an analysed image, detection of a patient's body region, separation of SAT and VAT. The algorithm was sequentially applied to each 2D axial slice of a 3D examination. To assess the accuracy of the proposed method, automated and manual segmentations (performed by two readers) of SAT and VAT were compared using Dice similarity coefficient (DSC) and average Hausdorff distance (AHD). Mean DSC was equal to 99.6% ± 0.4% for SAT and 99.6% ± 0.5% for VAT, which was equal to DSC obtained for comparison between both readers. In 90% of cases DSC was equal or above 99.0% and the minimal DSC was 97.6%. AHD equalled to 0.04 ± 0.06 for SAT and 0.13 ± 0.23 for VAT (automated vs. manual segmentations), while AHD for comparison of two manual segmentations was 0.03 ± 0.07 for SAT and 0.09 ± 0.20 for VAT. The processing time for a single slice was 0.16 s for an automated segmentation and 510 min for a manual segmen- tation. The processing time of an entire 3D stack (around 40 2D slices) was on average 6.5 s. Our algorithm for the automated detection of SAT and VAT on 3D CT scans has the same accuracy as manual segmentation and performs equally well for both adipose tissue compartments.
Wydawca
Czasopismo
Rocznik
Tom
Strony
729--739
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Department of Radiology, Jagiellonian University Medical College, Krakow, Poland
autor
- AGH University of Science and Technology, Al. Adama Mickiewicza 30, 30-059 Kraków, Poland
autor
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Wroclaw, Poland
autor
- Department of Radiology, Jagiellonian University Medical College, Krakow, Poland
autor
- Department of Radiology, Jagiellonian University Medical College, Krakow, Poland
autor
- Department of Radiology, Jagiellonian University Medical College, Krakow, Poland
Bibliografia
- [1] Hu HH, Nayak KS, Goran MI. Assessment of abdominal adipose tissue and organ fat content by magnetic resonance imaging. Obes Rev 2011;12:e504–15. http://dx.doi.org/10.1111/j.1467-789X.2010.00824.x.
- [2] Hui SCN, Zhang T, Shi L, Wang D, Ip CB, et al. Automated segmentation of abdominal subcutaneous adipose tissue and visceral adipose tissue in obese adolescent in MRI. Magn Reson Imaging 2018;45:97–104. http://dx.doi.org/10.1016/j.mri.2017.09.016.
- [3] Hu HH, Chen J, Shen W. Segmentation and quantification of adipose tissue by magnetic resonance imaging. MAGMA 2016;29:259–76. http://dx.doi.org/10.1007/s10334-015-0498-z.
- [4] Ackerman SE, Blackburn OA, Marchildon F, Cohen P. Insights into the link between obesity and Cancer. Curr Obes Rep 2017;6:195–203. http://dx.doi.org/10.1007/s13679-017-0263-x.
- [5] Schmidt AM. The growing problem of obesity. Arterioscler Thromb Vasc Biol 2015;35:e19–23. http://dx.doi.org/10.1161/ATVBAHA.115.305753.
- [6] Parikh AM, Coletta AM, Yu ZH, Rauch GM, Cheung JP, Court LE, et al. Development and validation of a rapid and robust method to determine visceral adipose tissue volume using computed tomography images. PLoS One 2017;12e0183515. http://dx.doi.org/10.1371/journal.pone.0183515.
- [7] Mazonakis M, Damilakis J. Computed tomography: What and how does it measure? Eur J Radiol 2016;85:1499–504. http://dx.doi.org/10.1016/j.ejrad.2016.03.002.
- [8] Chung H, Cobzas D, Birdsell L, Lieffers J, Baracos V. Automated segmentation of muscle and adipose tissue on CT images for human body composition analysis. In: Miga MI, Wong KH, editors. Eds.), International society for optics and photonics. 2009. http://dx.doi.org/10.1117/12.812412. p. 72610K.
- [9] Hussein S, Green A, Watane A, Papadakis G, Osman M, Bagci U. Context driven label fusion for segmentation of subcutaneous and visceral fat in CT volumes; 2015 (accessed May 15, 2019) http://arxiv.org/abs/1512.04958.
- [10] Takahashi N, Sugimoto M, Psutka SP, Chen B, Moynagh MR, Carter RE. Validation study of a new semi-automated software program for CT body composition analysis. Abdom Radiol (NY) 2017;42:2369–75. http://dx.doi.org/10.1007/s00261-017-1123-6.
- [11] Kullberg J, Hedström A, Brandberg J, Strand R, Johansson L, Bergström G, et al. Automated analysis of liver fat, muscle and adipose tissue distribution from CT suitable for largescale studies. Sci Rep 2017;7:10425. http://dx.doi.org/10.1038/s41598-017-08925-8.
- [12] Agarwal C, Dallal AH, Arbabshirani MR, Patel A, Moore G. Unsupervised quantification of abdominal fat from CT images using greedy snakes. In: Styner MA, Angelini ED, editors. Proc. SPIE, Vol. 10133, Id. 101332T 8 Pp. 2017. http://dx.doi.org/10.1117/12.2254139. p. 101332T.
- [13] Bridge CP, Rosenthal M, Wright B, Kotecha G, Fintelmann F, Troschel F, et al. Fully-automated analysis of body composition from CT in Cancer patients using convolutional neural networks. Cham: Springer; 2018. p. 204–13. http://dx.doi.org/10.1007/978-3-030-01201-4_22.
- [14] Kim YJ, Lee SH, Kim TY, Park JY, Choi SH, Kim KG. Body fat assessment method using CT images with separation mask algorithm. J Digit Imaging 2013;26:155–62. http://dx.doi.org/10.1007/s10278-012-9488-0.
- [15] Popuri K, Cobzas D, Esfandiari N, Baracos V, Jagersand M. Body composition assessment in axial CT images using FEM-based automatic segmentation of skeletal muscle. IEEE Trans Med Imaging 2016;35:512–20. http://dx.doi.org/10.1109/TMI.2015.2479252.
- [16] Makrogiannis S, Caturegli G, Davatzikos C, Ferrucci L. Computer-aided assessment of regional abdominal fat with food residue removal in CT. Acad Radiol 2013;20:1413–21. http://dx.doi.org/10.1016/j.acra.2013.08.007.
- [17] Weston AD, Korfiatis P, Kline TL, Philbrick KA, Kostandy P, Sakinis T, et al. Automated abdominal segmentation of CT scans for body composition analysis using deep learning. Radiology 2019;290:669–79. http://dx.doi.org/10.1148/radiol.2018181432.
- [18] Anwar SM, Majid M, Qayyum A, Awais M, Alnowami M, Khan MK. Medical image analysis using convolutional neural networks: a review. J Med Syst 2018;42:226. http://dx.doi.org/10.1007/s10916-018-1088-1.
- [19] Yoshizumi T, Nakamura T, Yamane M, Waliul Islam AHM, Menju M, Yamasaki K, et al. Abdominal fat: standardized technique for measurement at CT. Radiology 1999;211:283–6. http://dx.doi.org/10.1148/radiology.211.1.r99ap15283.
- [20] Zou KH, Warfield SK, Bharatha A, Tempany CMC, Kaus MR, Haker SJ, et al. Statistical validation of image segmentation quality based on a spatial overlap index. Acad Radiol 2004;11:178–89. http://dx.doi.org/10.1016/S1076-6332(03)00671-8.
- [21] Taha AA, Hanbury A. Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging 2015;15:29. http://dx.doi.org/10.1186/s12880-015-0068-x.
- [22] O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation. Navab N., Hornegger J., Wells W., Frangi A. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, vol 9351. Springer, Cham.
- [23] Ibtehaz N, Sohel Rahman M. MultiResUNet : rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw 2020;121:74–87. http://dx.doi.org/10.1016/j.neunet.2019.08.025.
- [24] Zhao B, Colville J, Kalaigian J, Curran S, Jiang L, Kijewski P, et al. Automated quantification of body fat distribution on volumetric computed tomography. J Comput Assist Tomogr 2006;30:777–83. http://dx.doi.org/10.1097/01.rct.0000228164.08968.e8.
- [25] Kim YJ, Lee SH, Kim TY, Park JY, Choi SH, Kim KG. Body fat assessment method using CT images with separation mask algorithm. J Digit Imaging 2013;26:155–62. http://dx.doi.org/10.1007/s10278-012-9488-0.
- [26] Pednekar A, Bandekar AN, Kakadiaris IA, Naghavi M. Automatic segmentation of abdominal fat from CT data, in: 2005 seventh IEEE work. Appl. Comput. Vis. - vol. 1, IEEE; 2005;308–15. http://dx.doi.org/10.1109/ACVMOT.2005.31.
- [27] Wang Y, Qiu Y, Thai T, Moore K, Liu H, Zheng B. A two-step convolutional neural network based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT images. Comput Methods Programs Biomed 2017;144:97–104. http://dx.doi.org/10.1016/j.cmpb.2017.03.017.
- [28] Parikh AM, Coletta AM, Yu ZH, Rauch GM, Cheung JP, Court LE, et al. Development and validation of a rapid and robust method to determine visceral adipose tissue volume using computed tomography images. PLoS One 2017;12e0183515. http://dx.doi.org/10.1371/journal.pone.0183515.
- [29] Nemoto M, Yeernuer T, Masutani Y, Nomura Y, Hanaoka S, Miki S, et al. Development of automatic visceral fat volume calculation software for CT volume data. J Obes 2014. http://dx.doi.org/10.1155/2014/495084. ID 495084.
- [30] Andreoli A, Garaci F, Cafarelli FP, Guglielmi G. Body composition in clinical practice. Eur J Radiol 2016;85:1461–8. http://dx.doi.org/10.1016/j.ejrad.2016.02.005.
- [31] Hill JH, Solt C, Foster MT. Obesity associated disease risk: the role of inherent differences and location of adipose depots. Horm Mol Biol Clin Investig 2018;33. http://dx.doi.org/10.1515/hmbci-2018-0012.
- [32] Ryo M, Kishida K, Nakamura T, Yoshizumi T, Funahashi T, Shimomura I. Clinical significance of visceral adiposity assessed by computed tomography: a Japanese perspective. World J Radiol 2014;6:409–16. http://dx.doi.org/10.4329/wjr.v6.i7.409.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-047bcac2-3995-4d71-b8b2-a44f383b671d