PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Blast fragmentation classification using Number-Size (N-S) fractal model in Jalal-Abad iron mine

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Klasyfikacja wymiarów fragmentów skał powstałych w trakcie prac strzałowych w kopalni rud żelaza Jalal-Abad w oparciu o model fraktalny N-S (Number-Size)
Języki publikacji
EN
Abstrakty
EN
One of the main purpose of accurate blasting in open pit mining is to achieve optimum rock fragmentation. The degree of rock fragmentation plays a significant role in order to control and minimise the overall production cost including loading, hauling and crushing. In the present paper, the application of a Number-Size (N-S) fractal model is intended to classify the blast fragmentation size in the Jalal-Abad iron mine, SW Iran, using GoldSize image analysis software for four blasting with the obtained result being compared with Kuz-Ram curves. To do this, the fractal dimensions via N-S log-log plots were generated based on the output of the GoldSize software. The results indicated that the fragmented rocks have a multifractal nature with four/five different fragmented populations in terms of size namely; the fine rocks with the size of less than 16 cm, Mean-fragment values between 16 and 45 cm, In-range between 45 and 70 cm and finally, oversize larger than 70 cm.
PL
Jednym z głównych celów prowadzenia prac strzałowych w kopalniach odkrywkowych jest uzyskanie fragmentów skał o optymalnych rozmiarach. Stopień rozkruszania skał jest kluczowym czynnikiem decydującym o całkowitych kosztach produkcji, obejmujących także koszty załadunku, odstawy urobku i rozdrobnienia. W pracy tej omówiono zastosowanie modelu fraktalnego N-S (Number-Size) do klasyfikacji fragmentów skał uzyskanych w wyniku prowadzenia prac strzałowych w kopalni rud żelaza Jalal-Abad, w południowo-zachodnich rejonach Iranu. W analizach wykorzystano oprogramowanie do analizy obrazów GoldSize, wyniki uzyskane po czterech seriach prac strzałowych porównano następnie z wykresami Kuz-Ram. W tym celu na podstawie danych wyjściowych uzyskanych przy pomocy pakietu GoldSize wygenerowano wymiary fraktalne w oparciu o wykresy N-S w pełnej skali logarytmicznej. Otrzymane wyniki wskazują, że uzyskane fragmenty skalne miały charakter multi-fraktalny, obejmując cztery lub pięć populacji odłamków różniących się w kategorii rozmiarów: skały drobne o wymiarach poniżej 16 cm, odłamki o średniej wielkości: pomiędzy 16 a 45 cm, odłamki o rozmiarach w zakresie 45-70 cm i odłamki duże, o wymiarach powyżej 70 cm.
Rocznik
Strony
783--796
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
autor
  • Young Researchers Club, South Tehran Branch, Islamic Azad University, Tehran, Iran
autor
  • Department of Mining Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
  • Department of Mining Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
  • Department of Mining and Metallurgical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
autor
  • Camborne School of Mines, University of Exeter, Penryn, UK
autor
  • Department of Mining Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
Bibliografia
  • [1] Afzal P., Fadakar Alghalandis Y., Khakzad A., Moarefvand P., Rashidnejad Omran N., 2011. Delineation of mineralization zones in porphyry Cu deposits by fractal concentration-volume modeling. Journal of Geochemical Exploration 108, 220-232.
  • [2] Agterberg F.P., 1995. Multifractal modeling of the sizes and grades of giant and supergiant deposits. International Geology Review 37, 1-8.
  • [3] Agterberg F.P., Cheng Q., Wright D.F., 1993. Fractal modelling of mineral deposits. In: Elbrond J., Tang X., (Eds.), 24Th APCOM symposium proceeding, Montreal, Canada, 43-53.
  • [4] Badel M., Angorani S., Shariat Panahi M., 2011. The application of median indicator kriging and neural network in modeling mixed population in an iron ore deposit. Computers & Geosciences 37 (4), 530-540.
  • [5] Bolviken B., Stokke P.R., Feder J., Jossang T., 1992. The fractal nature of geochemical landscapes. Journal of Geochemical Exploration 43, 91-109.
  • [6] Cunningham C.V.B., 1983. The Kuz-Ram model for prediction of fragmentation from blasting. In: Proc. 1st Int. Symposium on Rock Fragmentation by Blasting, Lulea, Sweden, 22-26 August. Lulea University of Technology, Lulea, 439-452.
  • [7] Cunningham C.V.B., 1987. Fragmentation estimations and the Kuz-Ram model – four years on. In: Proc. 2nd Int. Symposium on Rock Fragmentation by Blasting, Keystone, Colorado, USA. Society for Experimental Mechanics, Bethel, CT, 475-487.
  • [8] Cunningham C.V.B., 2005. The Kuz-Ram fragmentation model – 20 years on. In: R. Holmberg (Ed.), Third EFEE World Conference on Explosives and Blasting. European Federation of Explosives Engineers, UK, Brighton, p. 201-210.
  • [9] Deng J., Wang Q., Yang L., Wang Y., Gong Q., Liu H., 2011. Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China. Journal of Geochemical Exploration 105, 95-105.
  • [10] Enayatollahi I., Aghajani Bazzazi A., Asadi A., 2014. Comparison Between Neural Networks and Multiple Regression Analysis to Predict Rock Fragmentation in Open-Pit Mines. Rock Mechanics and Rock Engineering 47 (2), 799-807.
  • [11] Faramarzi F., Mansouri H., Ebrahimi Farsangi M.A., 2013. A rock engineering systems based model to predict rock fragmentation by blasting. International Journal of Rock Mechanics and Mining Sciences 60, 82-94.
  • [12] Girdner K.K., Kemeny J.M., Srikant A., 1996. The split system for analyzing the size distribution of fragmented rock. In: Franklin J., Katsabanis PD. Measurement of blast fragmentation. CRC Press, Balkema, Rotterdam, 101-108.
  • [13] Jimeno C.L., Jimeno E.L., Carcedo F.J.A., 1995. Drilling and Blasting of Rocks. CRC Press, A.A. Balkema, Netherlands, Rotterdam.
  • [14] Jiránková E., 2010. Assessment of rigid overlying strata failure in face mining. Central European Journal of Geosciences 2, 524-530.
  • [15] Karamia A., Afiuni-Zadehb S., 2012. Sizing of rock fragmentation modeling due to bench blasting using adaptive neuro-fuzzy inference system and radial basis function. International Journal of Mining Science and Technology 22, 459-463.
  • [16] Kemeny J., Girdner K., Bobo T., Norton B., 1999. Improvements for fragmentation measurement by digital imaging: accurate estimation of fines. In: Holmberg R., (Ed.), 6th Int. Symposium on Rock Fragmentation by Blasting. CRC Press, Johannesburg, 103-109.
  • [17] Kuznetsov V.M., 1973. Mean diameter of fragments formed by blasting rock. Soviet. Min. Sci. 9 (2), 144-148.
  • [18] Lathama J.P., Meulenb J.V., Duprayc S., 2006. Prediction of fragmentation and yield curves with reference to armourstone production. Engineering Geology 87, 60-74.
  • [19] Lilly P.A., 1986., An empirical method of assessing rock mass blastability. In: Proceedings of the large open pit miting conference, Melbourne, Australia, 89-92.
  • [20] Maerz N.H., Palangio T.C., Franklin J.A., 1996. WipFrag image based granulometry system. In: Franklin J.A., Katsabanis T., (Eds.), Measurement of Blast Fragmentation, Rotterdam, Balkema, 91-99.
  • [21] Mandelbrot B.B., 1983. The fractal geometry of nature. W.H. Freeman, Updated and Augmented Edition, San Francisco, CA.
  • [22] Meng X., Zhao P., 1991. Fractal method for statistical analysis of geological data. Chinese Journal of Geoscience 2, 207-211.
  • [23] Monecke T., Monecke J., Herzig P.M., Gemmell J.B., Monch W., 2005. Truncated fractal frequency distribution of element abundance data: a dynamic model for the metasomatic enrichment of base and precious metals. Earth and Planetary Science Letters 232, 363-378.
  • [24] Morin M.A., Ficarazzo F., 2006. Monte Carlo simulation as a tool to predict blasting fragmentation based on the Kuz-Ram model. Comput Geosci 32 (3), 352-9.
  • [25] Ozkahraman H.T., 2006. Fragmentation Assessment and Design of Blast Pattern at Goltas Limestone Quarry, Turkey (Technical Note). International Journal of Rock Mechanics & Mining Sciences 43, 628-633.
  • [26] Perfect E., 1997. Fractal models for the fragmentation of rocks and soils: a review. Engineering Geology 48, 185-198.
  • [27] Rosin P., Rammler E., 1933. The laws governing the fineness of powdered coal. J. Inst. Fuel 7, 29-36.
  • [28] Sanchidrian J.A., Segarra .P, Lopez L.M., 2006. A practical procedure for the measurement of fragmentation by blasting by image analysis. Rock Mech. Rock Eng. 39, 359-382.
  • [29] Sanchidrián J.A., Segarra P., Ouchterlony F., López .LM., 2009. On the accuracy of fragment size measurement by image analysis in combination with some distribution functions. Rock Mechanics and Rock Engineering 42 (1), 95-116.
  • [30] Segarra P., Sanchidrian J.A., Moser P., Grasedieck A., Smooch B., Pascual J.A., 2005. Energy controlled blasting for less fines production. In: Holmberg R (Ed), Third EFEE World Conference on Explosives and Blasting, European Federation of Explosives Engineers, UK, Brighton, 535-543.
  • [31] Tafazoli S., Ziraknejad N., 2009. An in-Shovel Camera-based Technology for Automatic Rock Size Sensing and Analysis in Open Pit Mining. In: Diederichs M., Grasselli g., (Eds.), The 3rd CANUS Rock Mechanics Symposium, ROCKENG09, Toronto, Canada, May 2009.
  • [32] Tosun A., Konak G., Toprak T., Karakus D., Hakan A.O., 2014. Development of the Kuz-Ram Model to Blasting In a Limestone Quarry. Arch. Min. Sci. 59, 2, 477-488.
  • [33] Turcotte D.L., 1986. A fractal approach to the relationship between ore grade and tonnage. Econ Geol 18, 1525-1532.
  • [34] Turcotte D.L., 2002. Fractals in petrology. Lithos 65, 261-271.
  • [35] Wang Q.F., Deng J., Liu H., Yang L.Q., Wan L., Zhang R.Z., 1993. Fractal models for ore reserve estimation. Ore Geology Reviews 37, 2-14.
  • [36] Wang Q.F., Deng J., Liu H., Wang Y., Sun X., Wan L., 2011. Fractal models for estimating local reserves with different mineralization qualities and spatial variations. Journal of Geochemical Exploration 108, 196-208.
  • [37] Xu Y., 2004. Calculation of unsaturated hydraulic conductivity using a fractal model for the pore-size distribution. Computers and Geotechnics 31, 549-557.
  • [38] Yasrebi A.B., Afzal P., Wetherelt A., Foster P., Esfahanipour R., 2013. Correlation between geology and concentration volume fractal models: significance for Cu and Mo mineralized zones separation in the Kahang porphyry deposit (Central Iran). Geologica Carpathica 64, 153-163.
  • [39] Yasrebi A.B., Wetherelt A., Foster P., Coggan J., Afzal P., Agterberg F., Kaveh Ahangaran D., 2014. Application of a density-volume fractal model for rock characterisation of the Kahang porphyry deposit. International Journal of Rock Mechanics & Mining Sciences 66, 188-193.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04738547-d4e1-43fd-b21e-eaebcafb9baf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.