Identyfikatory
Warianty tytułu
Materiały lignocelulozowe z łodyg roślin jednorocznych
Języki publikacji
Abstrakty
Lignocellulosic materials from the stems of annual plants. As part of the research, lignocellulosic materials were produced based on parallel gluing of whole (not crushed into small particles) stems of goldenrod, hemp, miscanthus and willow twigs using polyurethane glue. The stems of goldenrod, hemp and miscanthus were crushed before gluing in order to "open" the tubular structure. For the materials produced, the density, density profile, modulus of rupture (MOR), modulus of elasticity (MOE), internal bond (IB), thickness swelling (TS) and water absorption (WA) after 2 and 24 hours of soaking in water were tested. The produced materials had a density of 500 kg/m3. The material made of willow twigs was characterized by the highest strength parameters. Materials made of goldenrod or hemp showed comparable strength parameters, but significantly higher than the strength parameters of the material made of miscanthus. The material made from miscanthus was characterized by the highest resistance to water.
ramach badań wytworzono materiały lignocelulozowe na bazie równoległego sklejania całych (nierozdrobnionych do postaci drobnych cząstek) łodyg nawłoci, konopi, miskantusa oraz witkek wierzbowych przy zastosowaniu kleju poliuretanowego. Łodygi nawłoci, konopi, miskantusa przed klejeniem były miażdżone w celu „otwarica” struktury rurkowej. Dla wytworzonych materiałów zbadano gęstość, profil gęstości, wytrzymałość na zginanie statyczne (MOR), modył sprężystości przy zginaniu (MOE), wytrzymałość na rozciąganie prostopadłe (IB), spęcznienia na grubość (TS) oraz nasiakliwość (WA) po 2 i 24h moczenia w wodzie. Wytworzone materiały charakteryzowały się gęstością 500 kg/m3. Najwyższymi parametrami wytrzymałościowymi charakteryzował się materiał wykonany z witek wierzby. Materiały wykonane z nawłoci lub konopi wykazywały porównywalne parametry wytrzymałościowe, jednakże istotnie wyższe od parametrów wytrzymałościowych materiału wykonanego z miskantusa. Materiał wytworzony z miskantusa charakteryzował się największą odpornością na działanie wody.
Rocznik
Tom
Strony
38--51
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
autor
- Faculty of Wood Technology, Warsaw University of Life Sciences – SGGW
autor
- Department of Technology and Entrepreneurship in Wood Industry, Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences – SGGW
Bibliografia
- 1. ABOBAKR H., RAJI M., ESSABIR H., BENSALAH M.O., BOUHFID R., QAISS A.E.K., 2024: Enhancing oriented strand board performance using wheat straw for ecofriendly construction. Construction and Building Materials, 417, 135135. DOI: 10.1016/j.conbuildmat.2024.135135.
- 2. ALMA M.H., KALAYCIOGLU H., BEKTAS I., TUTUS A., 2005: Properties of cotton carpel-based particleboards. Ind Crop Prod 22(2):141-149.
- 3. AURIGA R., BORYSIUK P., GUMOWSKA A., SMULSKI P., 2019: Influence of apple wood waste from the annual care cut on the mechanical properties of particleboards. Annals of Warsaw University of Life Sciences - SGGW, Forestry and Wood Technology 105, 47-53. ISSN 1898-5912.
- 4. AURIGA R., BORYSIUK P., MISIURA Z., 2021: Evaluation of the physical and mechanical properties of particle boards manufactured containing plum pruning waste. Biuletyn Informacyjny OB-RPPD 1-2 (2021) 5-11 https://doi.org/10.32086/biuletyn.2021.01.
- 5. BALDUCCI F., HARPER CH., MEINLSCHMIDT P., DIX B., SANASIL A., 2008: Development of Innovative Particleboard Panels. Drvna industrija 59 (3).
- 6. BAMBACH M.R., 2017: Compression strength of natural fibre composite plates and sections of flax, jute and hemp. Thin-Walled Structures Volume 119, October 2017, Pages 103-113.
- 7. BANJO AKINYEMI A., AFOLAYAN J., OLUWATOBI E., 2016: Some properties of composite corn cob and sawdust particle boards. Construction and Building Materials 127, 436-441.
- 8. BEKALO S.A., REINHARDT W.H., 2010: Fibers of coffee husk and hulls for the production of particleboard, Materials and Structures, 43(8): 1049-1060.
- 9. COSTA D., SERRA J., QUINTEIRO P., DIAS A.C., 2024: Life cycle assessment of woodbased panels: A review. Journal of Cleaner Production, 444, 140955.
- 10. DUKARSKA D., ŁĘCKA J., CZARNECKI R., 2012: The effect of wood chip substitution with evening primrose waste on properties of particleboards depending on the type of binding agent. Electronic Journal of Polish Agricultural Universities (EJPAU) 15(2) # 05.
- 11. DZIURKA D., MIRSKI R., 2013: Lightweight boards from wood and rape straw particles. Wood. Research Papers. Research Reports. Announcements. 56(190): 19-32.
- 12. GHALEHNO M.D., NAZERIAN M., BAYATKASHKOOLI A., 2011: Influence of utilization of bagasse in surface layer on bending strength of three-layer particleboard, European Journal of Wood and Wood Products, Volume 69, Issue 4, 533-535.
- 13. GUNTEKIN E., KARAKUS B., 2008: Feasibility of using eggplant (Solanum melongena) stalks in the production of experimental particleboard. lud Crop Prod 27(3): 354-358.
- 14. GUNTEKIN E., UNER B., KARAKUS B., 2009: Chemical composition of tomato (Solanum lycopersicum) stalk and suitability in the particleboard production. J Environ Biol 30(5):731 -734.
- 15. Gürü M., Tekeli S., Bilici I., 2006: Manufacturing of urea formaldehyde based composite particleboard from almond shell. Materials & Design 27(10):1148-1151.
- 16. Hall M., 2022: Developing a prefabricated timber and straw-bale wall panel for Aotearoa New Zealand. Proceedings of the International Conference of Architectural Science Association, 2022-December, 230-239.
- 17. https://atlas.roslin.pl/ (accessed May 27, 2024).
- 18. KALAYCIOGLU H., NEMLI G., 2006: Producing composite particleboard from kenaf (Hibiscus cannabinus L.) stalks. Industrial Crops and Products 24(2): 177-180.
- 19. KHEDARI J., CHAROENVAI S., HIRUNLABH J., 2003: New insulating particleboards from durian peel and coconut coir. Building and Environment 38:435-441.
- 20. KLIMEK P., WIMMER R., MEINLSCHMIDT P., KUDELA J., 2018: Utilizing Miscanthus stalks as raw material for particleboards. Industrial Crops and Products, 111, 270-276.
- 21. KOWALUK G., KĄDZIELA J., 2014: Properties of particleboard produced with use of hazelnut shells. Annals Warsaw University of Life Sciences - SGGW. Forestry and Wood Technology 85, 131-134.
- 22. KOZLOWSKI R., WLADYKA-PRZYBYLAK M., 2004: Uses of Natural Fiber Reinforced Plastics. In: Wallenberger, F.T., Weston, N.E. (eds) Natural Fibers, Plastics and Composites. Springer, Boston, MA. 249-274.
- 23. LEE S.H., LUM W.C., BOON J.G., KRISTAK L., ANTOV P., PĘDZIK M., ROGOZINSKI T., TAGHIYARI H.R., LUBIS M.A.R., FATRIASARI W., YADAV S.M., CHOTIKHUN A., PIZZI A., 2022: Particleboard from agricultural biomass and recycled wood waste: a review. journal of materials research and technology,20, 4630-4658.
- 24. LIPSKA K., UFNOWSKI P., 2023: Corn pomace as a substitute for wood raw material in lignocellulosic composite technology. Annals of Warsaw University of Life Sciences – SGGW Forestry and Wood Technology, 123, 109-117.
- 25. LYONS A., 2010: Materials for architects and builders, Fourth edition. Elsevier’s Science & Technology. Oxford, UK.
- 26. MIRSKI R., BANASZAK A., FABISIAK E., SIUDA J., 2021: Anatomical properties of straw of various annual plants used for the production of wood panels. Wood Research, 66 (6), 995 - 1005. DOI: 10.37763/WR.1336-4561/66.6.9951005.
- 27. NEITZEL N., HOSSEINPOURPIA R., WALTHER T., ADAMOPOULOS S., 2022: Alternative Materials from Agro-Industry for Wood Panel Manufacturing - A Review. Materials, 15, 4542.
- 28. NEMLI G., KALAYCIOGLU H., ALP T., 2001: Suitability of date palm (Phoenix dactyliferia) branches for particleboard production. Holz Roh Werkst 59(6):411-412.
- 29. NEMLI G., KIRCI H., SERDAR B., AY N., 2003: Suitability of kiwi (Actinidia sinensis Planch.) prunings for particleboard manufacturing. Ind Crop Prod 17(l), 39-46.
- 30. NTALOS G.A., GRIGORIOU A.H., 2002: Characterization and utilization of vine prunings as a wood substitute for particleboard production. Ind Crop Prod 16:59-68.
- 31. PELC O., KOWALUK G., 2023: Selected physical and mechanical properties of particleboards with variable shares of nettle Urtica dioica L. lignocellulosic particles. Annals of Warsaw University of Life Sciences – SGGW Forestry and Wood Technology, 123, 30-40.
- 32. PHILIPPOU1 J.L., KARASTERGIOU S.P., 2001: Lignocellulosic materials from annual plants and agricultural residues as raw materials for composite building materials. Aristotle University of Thessaloniki, Department of Forestry and Natural Environment. Proceedings of the International Conference: FOREST RESEARCH: A Challenge for an Integrated European Approach, 817-822.
- 33. PN-EN 310:1994 Płyty drewnopochodne -- Oznaczanie modułu sprężystości przy zginaniu i wytrzymałości na zginanie.
- 34. PN-EN 317:1999 Płyty wiórowe i płyty pilśniowe -- Oznaczanie spęcznienia na grubość po moczeniu w wodzie.
- 35. PN-EN 319:1999 Płyty wiórowe i płyty pilśniowe -- Oznaczanie wytrzymałości na rozciąganie w kierunku prostopadłym do płaszczyzn płyty.
- 36. PN-EN 323:1999 Płyty drewnopochodne -- Oznaczanie gęstości.
- 37. SUGAHARA E.S., DIAS A.M.A., BOTELHO E.C., DIAS A.M.P.G., DE CAMPOS C.I., 2024: Environmental Evaluation of Experimental Heat-treated Oriented Strand Board. BioResources, 19 (1), 732 - 750.
- 38. SVOBODOVÁ H., HLAVÁČKOVÁ P., 2023: Forest as a source of renewable material to reduce the environmental impact of buildings. Journal of Forest Science, 69 (10), 451-462.
- 39. TAHA I., ELKAFAFY M.S., EL MOUSLY H., 2018: Potential of utilizing tomato stalk as raw material for particleboards. Ain Shams Engineering Journal, 9 (4), 1457 - 1464. DOI: 10.1016/j.asej.2016.10.003.
- 40. THOEMEN H., IRLE M., SERNEK M., 2010: Wood-based panels. An introduction for specialists. Brunel University Press.
- 41. TICHI A.H., BARI E., NICHOLAS D.D., 2018: How nano-wollastonite can change the fundamental properties of a wood fibre and rice straw composites? IET Nanobiotechnology, 12 (8), 1027-1030. DOI: 10.1049/iet-nbt.2018.5163.
- 42. TRÖGER F., WEGENER G., SEEMANN C., 1998: Miscanthus and flax as raw material for reinforced particleboards. Industrial Crops and Products, 8, 113-121.
- 43. Wilk K., Burawska I., 2022: Biobased building materials – directions and development prospects. Annals of Warsaw University of Life Sciences - SGGW Forestry and Wood Technology, 119, 71-77.
- 44. WRONKA A., KOWALUK G., 2020: A potential of non-energy use of agricultural residues and energy plants in lignocellulosic composites production. A brief report. Annals 51 of Warsaw University of Life Sciences – SGGW Forestry and Wood Technology, 110, 73-78.
- 45. ZHOU T., PANG B., CAO X.-F., BAO N., ZHU C.-J., SUN Z., YANG S., YUAN T.-Q., 2023: Sieving and hydrothermal pre-treatments for preparing ultra-high mechanical strength particleboard. Journal of Applied Polymer Science, 140 (22), e53916. DOI:10.1002/app.53916.
- 46. ZVIRGZDS K., KIRILOVS E., KUKLE S., GROSS U., 2022: Production of Particleboard Using Various Particle Size Hemp Shives as Filler. Materials 2022, 15, 886.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0472ad59-e9c5-45d5-9cc3-5853c8e7b6e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.