PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of AlSi10Mg recycled powder on corrosion-resistance behaviour of additively manufactured components: mechanical aspects and acoustic emission investigation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effects of using recycled AlSi10Mg aluminium alloy powders on the mechanical properties and the corrosion-resistance behaviour of the components manufactured via selective laser melting (SLM) were analysed. The microstructural results show that the utilisation of recycled powder causes coarsening of interdendritic Si-network, especially along the melt pool boundaries of the SLM specimens. The corrosion resistance of the samples was evaluated by means of neutral salt spray (NSS) tests for 1000 h and mass loss measurements. The corrosion behaviour, in terms of surface roughness, density and porosity, however, remains almost the same between the samples produced by virgin and recycled powder. In addition to this, a passive NDE tool has been used to investigate and study the impact of powders on the corrosion performance of the alloy: Acoustic Emission (AE) technique. SEM observations allowed to highlight the morphological differences in the surface of the test specimens induced by the exposure condition. Thus, it was possible to correlate the AE results to corrosion mechanisms activated on the surfaces of the test specimen. A good correlation between the corrosion-resistance behaviour and the AE test results were obtained. Finally, the mechanical properties before and at the end of the accelerated corrosion were evaluated according to the yield strength, tensile strength, and elongation at breakage. The results showed comparable mechanical properties for the samples produced using both virgin and recycled powders. Besides, no notable influence of the exposure to corrosive environment on the mechanical performance was observed.
Rocznik
Strony
art. no. e52, 2022
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
  • Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy
  • Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy
  • Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy
autor
  • Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona 4, 70126 Bari, Italy
Bibliografia
  • 1. Yusuf SM, Hoegden M, Gao N. Effect of sample orientation on the microstructure and microhardness of additively manufactured AlSi10Mg processed by high-pressure torsion. Int J Adv Manuf Technol. 2020;106(9):4321–37.
  • 2. Ardila LC, Garciandia F, González-Díaz JB, Álvarez P, Echeverria A, Petite MM, et al. Effect of IN718 recycled powder reuse on properties of parts manufactured by means of selective laser melting. Phys Procedia. 2014;56:99–107.
  • 3. Tang HP, Qian M, Liu N, Zhang XZ, Yang GY, Wang J. Effect of powder reuse times on additive manufacturing of Ti-6Al-4V by selective electron beam melting. JOM. 2015;67(3):555–63.
  • 4. Rafieazad M, Chatterjee A, Nasiri AM. Effects of recycled powder on solidification defects, microstructure, and corrosion properties of DMLS fabricated AlSi10Mg. JOM. 2019;71(9):3241–52.
  • 5. Asgari H, Baxter C, Hosseinkhani K, Mohammadi M. On microstructure and mechanical properties of additively manufactured AlSi10Mg_200C using recycled powder. Mater Sci Eng A. 2017;707:148–58.
  • 6. Aboulkhair NT, Maskery I, Tuck C, Ashcroft I, Everitt NM. On the formation of AlSi10Mg single tracks and layers in selective laser melting: microstructure and nano-mechanical properties. J Mater Process Technol. 2016;230:88–98.
  • 7. Olakanmi EO. Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: effect of processing conditions and powder properties. J Mater Process Technol. 2013;213(8):1387–405.
  • 8. Barile C, Casavola C, Campanelli SL, Renna G. Analysis of corrosion on sintered stainless steel: mechanical and physical aspects. Eng Fail Anal. 2019;95:273–82.
  • 9. Tan Q, Liu Y, Fan Z, Zhang J, Yin Y, Zhang M-X. Effect of processing parameters on the densification of an additively manufactured 2024 Al alloy. J Mater Sci Technol. 2020;58:34–45.
  • 10. Campbell FC Jr. Manufacturing technology for aerospace structural materials. Amsterdam: Elsevier; 2011.
  • 11. Renna G, Leo P, Casavola C. Effect of ElectroSpark process parameters on the WE43 magnesium alloy deposition quality. Appl Sci. 2019;9(20):4383.
  • 12. Revilla RI, Liang J, Godet S, de Graeve I. Local corrosion behavior of additive manufactured AlSiMg alloy assessed by SEM and SKPFM. J Electrochem Soc. 2016;164(2):C27.
  • 13. Porter DA, Easterling KE. Phase transformations in metals and alloys (revised reprint). Boca Raton: CRC Press; 2009.
  • 14. Dong S, Zhang X, Ma F, Jiang J, Yang W, Lin Z. Research on metallurgical bonding of selective laser melted AlSi10Mg alloy. Mater Res Express. 2020;7(2):025801.
  • 15. Maamoun AH, Elbestawi M, Dosbaeva GK, Veldhuis SC. Thermal post-processing of AlSi10Mg parts produced by Selective Laser Melting using recycled powder. Addit Manuf. 2018;21:234–47.
  • 16. Kempen K, Thijs L, van Humbeeck J, Kruth J-P. Mechanical properties of AlSi10Mg produced by selective laser melting. Phys Procedia. 2012;39:439–46.
  • 17. Louvis E, Fox P, Sutcliffe CJ. Selective laser melting of aluminium components. J Mater Process Technol. 2011;211(2):275–84.
  • 18. Trevisan F, Calignano F, Lorusso M, Pakkanen J, Aversa A, Ambrosio EP, et al. On the selective laser melting (SLM) of the AlSi10Mg alloy: process, microstructure, and mechanical properties. Materials. 2017;10(1):76.
  • 19. Weingarten C, Buchbinder D, Pirch N, Meiners W, Wissenbach K, Poprawe R. Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg. J Mater Process Technol. 2015;221:112–20.
  • 20. Rosenthal I, Stern A, Frage N. Strain rate sensitivity and fracture mechanism of AlSi10Mg parts produced by selective laser melting. Mater Sci Eng A. 2017;682:509–17.
  • 21. Zhao X, Song B, Fan W, Zhang Y, Shi Y. Selective laser melting of carbon/AlSi10Mg composites: Microstructure, mechanical and electronical properties. J Alloy Compd. 2016;665:271–81.
  • 22. Barile C, Casavola C, Moramarco V, Vimalathithan PK. A comprehensive study of mechanical and acoustic properties of selective laser melting material. Arch Civil Mech Eng. 2020;20(1):1–11.
  • 23. ASTM B. Standard practice for operating salt spray (fog) apparatus. ASTM International (1997 Edition). 2011.
  • 24. STANDARD B, ISO B. Corrosion tests in artificial atmospheres—Salt spray tests. 2006.
  • 25. Tan JH, Wong WLE, Dalgarno KW. An overview of powder granulometry on feedstock and part performance in the selective laser melting process. Addit Manuf. 2017;18:228–55.
  • 26. Read N, Wang W, Essa K, Attallah MM. Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development. Mater Des (1980-2015). 2015;65:417–24.
  • 27. Aboulkhair NT, Everitt NM, Ashcroft I, Tuck C. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit Manuf. 2014;1:77–86.
  • 28. Cordova L, Campos M, Tinga T. Revealing the effects of powder reuse for selective laser melting by powder characterization. JOM. 2019;71(3):1062–72.
  • 29. Thijs L, Kempen K, Kruth J-P, van Humbeeck J. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater. 2013;61(5):1809–19.
  • 30. Revilla RI, Verkens D, Rubben T, de Graeve I. Corrosion and corrosion protection of additively manufactured aluminium alloys—a critical review. Materials. 2020;13(21):4804.
  • 31. Tolochko NK, Mozzharov SE, Yadroitsev IA, Laoui T, Froyen L, Titov VI, et al. Balling processes during selective laser treatment of powders. Rapid Prototyp J. 2004. https://doi.org/10.1108/13552540410526953.
  • 32. Barile C, Casavola C, Pappalettera G, Kannan VP. Application of different acoustic emission descriptors in damage assessment of fiber reinforced plastics: a comprehensive review. Eng Fract Mech. 2020;235:107083.
  • 33. Barile C, Casavola C, Pappalettera G, Vimalathithan PK. Acoustic emission descriptors for the mechanical behavior of selective laser melted samples: an innovative approach. Mech Mater. 2020;148:103448.
  • 34. Darowicki K, Mirakowski A, Krakowiak S. Investigation of pitting corrosion of stainless steel by means of acoustic emission and potentiodynamic methods. Corros Sci. 2003;45(8):1747–56.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-046bc803-2e48-4444-818d-ae485dd8ad11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.