PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrochemical behavior and morphology of selected sintered samples of Mg65Zn30Ca4Pr1 alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to investigate the effect of the milling time on the corrosion resistance of the Mg65Zn30Ca4Pr1 alloy, powders of the alloy were prepared and milled for 13, 20, and 70 hours, respectively. The samples were sintered using spark plasma sintering (SPS) technology at 350◦C and pressure of 50 MPa. The samples were subjected to potentiodynamic immersion tests in Ringer’s solution at 37◦C. The obtained values of Ecorr were –1.36, –1.35, and –1.39 V, with polarization resistance Rp = 144, 189, and 101 Ω for samples milled for 13, 20 and 70 h, respectively. The samples morphology showed cracks and pits, thus signaling pitting corrosion.
Rocznik
Strony
art. no. e145564
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
autor
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
  • Institute of Materials Engineering, University of Silesia, ul. Pułku Piechoty 75 1a, 41-500 Chorzow, Poland
  • Materials Research Laboratory, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
autor
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18A, 44-100 Gliwice, Poland
  • Łukasiewicz Research Network – Poznan Institute of Technology, ul. Ewarysta Estkowskiego 6, 61-755 Poznan, Poland
Bibliografia
  • [1] X. Liu, W. Yuan, D. Shen, Y. Cheng, D. Chen, and Y. Zheng, “Exploring the biodegradation of pure Zn under simulated inflammatory condition,” Corros. Sci., vol. 189, p. 109606, Aug. 2021, doi: 10.1016/J.CORSCI.2021.109606.
  • [2] Z. Zhang et al., “Zn0.8Li0.1Sr – a biodegradable metal with high mechanical strength comparable to pure Ti for the treatment of osteoporotic bone fractures: In vitro and in vivo studies,” Biomaterials, vol. 275, p. 120905, Aug. 2021, doi: 10.1016/ J.BIOMATERIALS.2021.120905.
  • [3] F. Witte, “The history of biodegradable magnesium implants: A review,” Acta Biomater., vol. 6, no. 5, pp. 1680–1692, May 2010, doi: 10.1016/J.ACTBIO.2010.02.028.
  • [4] Y.B. Wang et al., “Biodegradable CaMgZn bulk metallic glass for potential skeletal application,” Acta Biomater., vol. 7, no. 8, pp. 3196–3208, Aug. 2011, doi: 10.1016/j.actbio.2011.04.027.
  • [5] D. Persaud-Sharma and A. Mcgoron, “Biodegradable magnesium alloys: A review of material development and applications,” J. Biomim. Biomater. Tissue. Eng., vol. 12, no. 1, pp. 25–39, 2012, doi: 10.4028/www.scientific.net/JBBTE.12.25.
  • [6] D. Jain et al., “Effect of exposure time on corrosion behavior of zinc-alloy in simulated body fluid solution: Electrochemical and surface investigation,” J. Mater.s Res. Technol., vol. 10, pp. 738–751, Jan. 2021, doi: 10.1016/J.JMRT.2020.12.050.
  • [7] M.K. Datta et al., “Structure and thermal stability of biodegradable Mg–Zn–Ca based amorphous alloys synthesized by mechanical alloying,” Mater. Sci. Eng. B, vol. 176, no. 20, pp. 1637–1643, Dec. 2011, doi: 10.1016/J.MSEB.2011.08.008.
  • [8] B. Hrapkowicz and S.T. Lesz, “Characterization of Ca50Mg20Zn12Cu18 Alloy,” Arch. Foundry Eng., vol. 19, no. 1, pp. 75–82, 2019, doi: 10.24425/AFE.2018.125195.
  • [9] Z. Li, X. Gu, S. Lou, and Y. Zheng, “The development of binary Mg–Ca alloys for use as biodegradable materials within bone,” Biomaterials, vol. 29, no. 4, pp. 1329–1344, 2008, doi: 10.1016/j.biomaterials.2007.12.021.
  • [10] B. Hrapkowicz, S. Lesz, M. Karolus, J. Popis, and A. Gabryś, “Electrochemical Behaviour and Morphology of Selected Sintered Samples of Mg65Zn30Ca4Pr1 Alloy,” in International Conference – Material Technologies in Silesia’2022, Jun. 2022, pp. 63–64.
  • [11] B.S. Murty, M.K. Datta, and S.K. Pabi, “Structure and thermal stability of nanocrystalline materials,” Sadhana, vol. 28, no. 1, pp. 23–45, 2003, doi: 10.1007/BF02717124.
  • [12] M.B. Kannan and R.K.S. Raman, “In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid,” Biomaterials, vol. 29, no. 15, pp. 2306–2314, 2008, doi: 10.1016/j.biomaterials.2008.02.003.
  • [13] B. Zberg, P.J. Uggowitzer, and J.F. Löffler, “MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants,” Nat. Mater., vol. 8, no. 11, pp. 887–891, Nov. 2009, doi: 10.1038/nmat2542.
  • [14] J.H. Byrne, E.D. O’Cearbhaill, and D.J. Browne, “Comparison of crystalline and amorphous versions of a magnesium-based alloy: corrosion and cell response,” Eur. Cell Mater., vol. 30, no. S.3, p. 75, 2015.
  • [15] H.E. Friedrich and B.L. Mordike, “Magnesium technology: Metallurgy, design data, applications,” in Magnesium Technology: Metallurgy, Design Data, Applications, Springer Berlin, Heidelberg, 2006, pp. 1–677, doi: 10.1007/3-540-30812-1.
  • [16] N. Žaludová, “Mg-RE Alloys and Their Applications,” WDS’05 Proceedings of Contributed Papers, 2005, pp. 643–648.
  • [17] K. Kowalski, M. Nowak, J. Jakubowicz, and M. Jurczyk, “The Effects of Hydroxyapatite Addition on the Properties of the Mechanically Alloyed and Sintered Mg-RE-Zr Alloy,” J. Mater. Eng. Perform., vol. 25, no. 10, pp. 4469–4477, Oct. 2016, doi: 10.1007/s11665-016-2306-y.
  • [18] D. Liu, D. Yang, X. Li, and S. Hu, “Mechanical properties, corrosion resistance and biocompatibilities of degradable Mg-RE alloys: A review,” J. Mater. Res. Technol., vol. 8, no. 1, pp. 1538–1549, 2019, doi: 10.1016/j.jmrt.2018.08.003.
  • [19] S. Lesz, B. Hrapkowicz, M. Karolus, and K. Gołombek, “Characteristics of the Mg-Zn-Ca-Gd Alloy after Mechanical Alloying,” Materials, vol. 14, no. 226, p. 226, 2021, doi: 10.3390/ma14010226.
  • [20] S. Lesz, B. Hrapkowicz, K. Gołombek, M. Karolus, and P. Janiak, “Synthesis of Mg-based alloys with rare-earth element addition by means of mechanical alloying,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e137586, 2021, doi: 10.24425/BPASTS.2021.137586.
  • [21] B. Cao et al., “The Accumulation and Metabolism Characteristics of Rare Earth Elements in Sprague-Dawley Rats,” Int. J. Environ. Res. Public Health, vol. 17, p. 1399, 2020, doi: 10.3390/ijerph17041399.
  • [22] R. Leggett, E. Ansoborlo, M. Bailey, D. Gregoratto, F. Paquet, and D. Taylor, “Biokinetic data and models for occupational intake of lanthanoids,” Int. J. Radiat. Biol., vol. 90, no. 11, pp. 996–1010, 2014, doi: 10.3109/09553002.2014.887868.
  • [23] P.W. Durbin, M.H. Williams, M. Gee, R.H. Newman, and J.G. Hamilton, “Metabolism of the Lanthanons in the Rat,” Exp. Biol. Med., vol. 91, no. 1, pp. 78–85, Nov. 2016, doi: 10.3181/00379727-91-22175.
  • [24] B. Lindell and F.D. Sowby, Limits for Intakes of Radionuclides by Workers, vol. 2, no. 3/4. Oxford, New York, Frankfurt: Pergamon Press, 1979.
  • [25] K. Amiya and A. Inoue, “Formation, Thermal Stability and Mechanical Properties of Ca-Based Bulk Glassy Alloys,” Mater. Trans., vol. 43, no. 1, pp. 81–84, 2002, doi: 10.2320/matertrans.43.81.
  • [26] I. Polmear, D. StJohn, J.-F. Nie, and M. Qian, “Novel Materials and Processing Methods” in Light Alloys (Fifth Edition), Butterworth-Heinemann: Boston, 2017, doi: 10.1016/b978-0-08-099431-4.00008-7.
  • [27] B. Hrapkowicz et al., “Microstructure and Mechanical Properties of Spark Plasma Sintered Mg-Zn-Ca-Pr Alloy,” Metals, vol. 12, no. 3, p. 375, Feb. 2022, doi: 10.3390/MET12030375.
  • [28] J. Trapp and B. Kieback, “Fundamental principles of spark plasma sintering of metals: part I – Joule heating controlled by the evolution of powder resistivity and local current densities,” Powder Metall., vol. 62, no. 5, pp. 297–306, Oct. 2019, doi: 10.1080/00325899.2019.1653532.
  • [29] R. Orrù, R. Licheri, A.M. Locci, A. Cincotti, and G. Cao, “Consolidation/synthesis of materials by electric current activated/assisted sintering,” Mater. Sci. Eng. R-Rep., vol. 63, no. 4–6, pp. 127–287, Feb. 2009, doi: 10.1016/J.MSER.2008.09.003.
  • [30] L. Schultz, “Formation of amorphous metals by mechanical alloying,” Mater. Sci. Eng., vol. 97, no. C, pp. 15–23, Jan. 1988, doi: 10.1016/0025-5416(88)90004-3.
  • [31] C. Suryanarayana, “Mechanical alloying and milling,” Prog. Mater. Sci., vol. 46, no. 1–2, pp. 1–184, Jan. 2001, doi: 10.1016/S0079-6425(99)00010-9.
  • [32] Y.F. Zhao, J.J. Si, J.G. Song, and X.D. Hui, “High strength Mg-Zn-Ca alloys prepared by atomization and hot pressing process,” Mater. Lett., vol. 118, pp. 55–58, 2013, doi: 10.1016/j.matlet.2013.12.053.
  • [33] J. Han and K. Ogle, “Dealloying of MgZn2 Intermetallic in Slightly Alkaline Chloride Electrolyte and Its Significance in Corrosion Resistance,” J. Electrochem. Soc., vol. 164, no. 14, p. C952, Nov. 2017, doi: 10.1149/2.0341714JES.
  • [34] A.I. Ikeuba et al., “Understanding the electrochemical behavior of bulk-synthesized MgZn2 intermetallic compound in aqueous NaCl solutions as a function of pH,” J. Solid State Electrochem., vol. 23, no. 4, pp. 1165–1177, Apr. 2019, doi: 10.1007/S10008-019-04210-Y.
  • [35] C.L. Wetteland, J. de Jesus Sanchez, C.A. Silken, N.Y.T. Nguyen, O. Mahmood, and H. Liu, “Dissociation of magnesium oxide and magnesium hydroxide nanoparticles in physiologically relevant fluids,” J. Nanopart. Res., vol. 20, no. 8, pp. 1–17, Aug. 2018, doi: 10.1007/S11051-018-4314-3/FIGURES/6.
  • [36] S. Virtanen, “Biodegradable Mg and Mg alloys: Corrosion and biocompatibility,” Mater. Sci. Eng. B, vol. 176, no. 20, pp. 1600–1608, Dec. 2011, doi: 10.1016/J.MSEB.2011.05.028.
  • [37] Y.N. Zhang, X.D. Liu, Z. Altounian, and M. Medraj, “Coherent nanoscale ternary precipitates in crystallized Ca4Mg72Zn24 metallic glass,” Scr. Mater., vol. 68, no. 8, pp. 647–650, Apr. 2013, doi: 10.1016/J.SCRIPTAMAT.2012.12.028.
  • [38] E. Diler et al., “Initial formation of corrosion products on pure zinc and MgZn2 examinated by XPS,” Corros. Sci., vol. 79, pp. 83–88, Feb. 2014, doi: 10.1016/J.CORSCI.2013.10.029.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04697bb0-ceb7-41bd-918a-fdb5d0f386f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.