Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper analyzes the impact of switchable glazing: electrochromic (EC) and gasochromic (GC) on the energy efficiency of the building. Using the analytical and comparative method, the energy-relevant EC and GC glazing features were defined. Secondly, experimental studies on the energy-saving role of EC and GC glazing in various climatic zones were analyzed. The paper aims to define this role. The analyzes were referred to the thermal and lighting aspects. Comparisons were made between the EC and GC technologies, as well as with traditional - “static” types of glazing. The analysis showed differences in the technical characteristics of both technologies. Despite the differences, the results prove a beneficial effect of EC and GC glazing on the reduction of usable energy consumption in the building. The impact is most significant in terms of relieving the cooling and air conditioning systems. In this field, EC glazing was determined a more favorable technology. Further detailed research is required, focusing mainly on the lighting aspect for moderate and cold climate zones. The research was summarized with a collective evaluation of the energy-related role of EC and GC glazing.
Czasopismo
Rocznik
Tom
Strony
27--38
Opis fizyczny
Biblioge. 24 poz.
Twórcy
autor
- PhD Eng. Arch.; University of Ecology and Management in Warsaw, Faculty of Architecture, Olszewska street 12, 00-792 Warsaw, Poland
Bibliografia
- [1] Lampert C.M. (1995). Chromogenic Switchable Glazing: Towards the development of the Smart Window. Proceeding - window innovations’95. Toronto. Canada July 5-6 th 1995.
- [2] Marchwiński J. (2007). Szklenie elektrochromatyczne w budownictwie (Electrochromic glazing in buildings). Świat Szkła, 2(106), 18-19.
- [3] Marchwiński J. (2007). Szklenie gazochromatyczne w budownictwie (Gasochromic glazing in buildings). Świat Szkła, 6(109), 20-21.
- [4] Persson M.L. (2006). Windows of Opportunities. Uppsala University. Faculty of Science and Technology.
- [5] Marchwiński J. (2014). Architectural evaluation of switchable glazing technologies as sun protection measure. Energy Procedia, 57, 1677-1686. doi:10.1016/j.egypro.2014.10.158.
- [6] Aguilar-Santana J.S., Jarimi H., Velasco-Carrasco M., Riffat S. (2020). Review on window-glazing technologies and future prospects. International Journal of Low-Carbon Technologies, 15, 112-120. doi:10.1093/ijlct/ctz032.
- [7] Addington M. & Schodek D. (2006). Smart Materials and Technologies. Elsevier.
- [8] Baetens R., Jelle B.P. & Gustavsen A. (2010). Properties, Requirements and Possibilities of Smart Windows for Dynamic Daylight and Solar Energy Control in Buildings: State-of-the-Art. Solar Energy Materials and Solar Cells, 94(2), 87-105. doi: 10.1016/j.solmat.2009.08.021.
- [9] Georg A. (2008). Switchable glazing with tungsten oxide. Elsevier.
- [10] Hausladen G., Saldanha M. & Liedl P. (2006). Climate Skin, Building-skin Concepts that Can Do More with Less Energy. Birkhauser, Basel-Boston- Berlin.
- [11] Platzer W.J. (2003). Handbook for the Use of Façade Technology. Architectural and technical guidelines. Fraunhofer ISE.
- [12] Cannavale A., Ayr U., Fiorito F.& Martellotta F. (2020). Smart Electrochromic Windows to Enhance Building Energy Efficiency and Visual Comfort. Energies, 13, 1449. doi:10.3390/en13061449.
- [13] Sibilio S., Rosato A., Scorpio M., Iuliano G., Ciampi G., Vanoli G.P.& de Rossi F. (2016). A Review of Electrochromic Windows for Residential Applications. International Journal Of Heat And Technology, 34(2), 481-488. doi:10.18280/ijht.34S241.
- [14] Wei Feng, Liping Zou, Guohua Gao, Guangming Wu, Jun Shen & Wen Li. (2016). Gasochromic smart window: optical and thermal properties, energy simulation and feasibility analysis. Solar Energy Materials & Solar Cells, 144, 316-323. doi:10.1016/j.solmat.2015.09.029.
- [15] Sbar N.L., Podbelski L., Yang H.M. & Pease B. (2012). Electrochromic dynamic windows for office buildings. International Journal of Sustainable Built Environment, 1, 125-139. doi:10.1016/j.ijsbe.2012.09.001.
- [16] Carmody J., Selkowitz S., Lee E., Arasteh D. & Willmert T. (2004). Windows Systems for High Performance Buildings. WW Norton & Company, New York-London.
- [17] Lefthieriotis G., Syrrokostas G., Yianoulis P. (2013). Photocoloration efficiency and stability of photoelectrochromic devices. Solid State Ionics, 231, 30-36. doi:10.1016/j.ssi.2012.10.024.
- [18] Deb S.K., Se-Hee Lee, Tracy C.E., Pitts J.R., Gregg B.A. & Branz H.M. (2001). Stand-alone photovoltaic- powered electrochromic smart window. Electrochimica Acta, 46, 2125-2130] doi:10.1016/S0013-4686(01)00390-5.
- [19] Deb S.K. (2000). Photovoltaic-Integrated Electrochromic Device for Smart-Window Applications. World Renewable Energy Congress VI Brighton, U.K. July 1-7, 2000.
- [20] Platzer W.J. (2003). Switchable Façade Technology - Energy Efficient Office Building with Smart Façades, Solar World Congress. Proceedings. CD-ROM : Solar energy for a sustainable future; June 14-19, 2003, Göteborg, Sweden.
- [21] Köhl M. (2006). Performance, durability and sustain- ability of advanced windows and solar components for building envelopes. International Energy Agency Solar Heating & Cooling Programme - Task 27 (Performance of Solar Façade Components). Subtask A: Performance. Projekt A2: Switchable glazing. Final Report. Fraunhofer ISE. March 2006.
- [22] https://www.powermarket.uk/markets/china/ [2021- 01-15].
- [23] https://www.climate-data.org [2021-01-15].
- [24] Nageib A., Elzafarany A.M., Elhefnawy M.H. & Mohamed F.O. (2020). Using smart glazing for reducing energy consumption on existing office building in hot dry climate. HBRC Journal, 16(1), 157-177. doi:10.1080/16874048.2020.1794226.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04662396-e05c-4637-9ae0-15bb5f1a468f