PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A numerical and experimental study of marine hydrogen–natural gas–diesel tri–fuel engines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Maritime shipping is a key component of the global economy, representing 80–90% of international trade. To deal with the energy crisis and marine environmental pollution, hydrogen-natural gas-diesel tri-fuel engines have become an attractive option for use in the maritime industry. In this study, numerical simulations and experimental tests were used to evaluate the effects of different hydrogen ratios on the combustion and emissions from these engines. The results show that, in terms of combustion performance, as the hydrogen proportion increases, the combustion ignition delay time in the cylinder decreases and the laminar flame speed increases. The pressure and temperature in the cylinder increase and the temperature field distribution expands more rapidly with a higher hydrogen ratio. This means that the tri-fuel engine (H2 +CH4 +Diesel) has a faster response and better power performance than the dual-fuel engine (CH4 +Diesel). In terms of emission performance, as the hydrogen proportion increases, the NO emissions increase, and CO and CO2 emissions decrease. If factors such as methane escape into the atmosphere from the engine are considered, the contribution of marine tri-fuel engines to reducing ship exhaust emissions will be even more significant. Therefore, this study shows that marine hydrogen-natural gas-diesel tri-fuel engines have significant application and research prospects.
Rocznik
Tom
Strony
80--90
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Merchant Marine College, Shanghai Maritime University, 1550 Haigang Ave, 201306 Shanghai, China
autor
  • Merchant Marine College, Shanghai Maritime University, 1550 Haigang Ave, 201306 Shanghai, China
autor
  • CSSC-MES Diesel Co. Ltd, 6 Xinyuan South Road, 201306 Shanghai, China
autor
  • School of Automotive Engineering, Changshu Institute of Technology, No. 99, 3rd South Ring Road, 215500 Suzhou, China
  • Merchant Marine College, Shanghai Maritime University, 1550 Haigang Ave, 201306 Shanghai, China
autor
  • Merchant Marine College, Shanghai Maritime University, 1550 Haigang Ave, 201306 Shanghai, China
  • Merchant Marine College, Shanghai Maritime University, 1550 Haigang Ave, 201306 Shanghai, China
Bibliografia
  • 1. Balcombe P., Brierley J., Lewis C., et al. (2019). How to Decarbonise International Shipping: Options for Fuels, Technologies and Policies. Energy Conversion and Management. 182(2), 72–88.
  • 2. Eyring V., Köhler H. W., van Aardenne J., Lauer A. (2005). Emissions from International Shipping: 1. The Last 50 Years. Journal of Geophysical Research Atmospheres.110 (D17), 1–12.
  • 3. Lister J., Poulsen R. T., Ponte S. (2015). Orchestrating Transnational Environmental Governance in Maritime Shipping. Global Environmental Change. 34, 185–95.
  • 4. Labeckas G., Slavinskas S., Rudnicki J., et al. (2018). The Effect of Oxygenated Diesel-N-Butanol Fuel Blends on Combustion, Performance, and Exhaust Emissions of a Turbocharged CRDI Diesel Engine. Polish Maritime Research. 1(97), 108–120.
  • 5. Schinas O., Stefanakos C. N. (2014). Selecting Technologies Towards Compliance with MARPOL Annex VI: The Perspective of Operators. Transportation Research Part D-Transport and Environment. 28(28), 28-40.
  • 6. Burel F., Taccani R., Zuliani N. (2013). Improving Sustainability of Maritime Transport Through Utilization of Liquefied Natural Gas (LNG) for Propulsion. Energy 57(57), 412–420.
  • 7. Lu J., Zahedi A., Yang C., et al. (2013). Building the Hydrogen Economy in China: Drivers, Resources and Technologies. Renewable and Sustainable Energy Review. 23, 543–556.
  • 8. Bicer Y., Dincer I. (2018). Clean Fuel Options with Hydrogen for Sea Transportation: A Life Cycle Approach. International Journal of Hydrogen Energy. 43(211), 1179–1193.
  • 9. Tutak W., Arkadiusz, Grab-Rogaliński K., et al. (2020). Effect of Natural Gas Enrichment with Hydrogen on Combustion Process and Emission Characteristic of a Dual Fuel Diesel Engine. International Journal of Hydrogen Energy. 1(119), 901–910.
  • 10. Ouchikh S., Lounici M. S., Tarabe, L, et al. (2019). Effect of Natural Gas Enrichment with Hydrogen on Combustion Characteristics of a Dual Fuel Diesel Engine. International Journal of Hydrogen Energy. 44(26), 13974–13987.
  • 11. Abu-Jrai A. M., Al-Muhtaseb A. H., Hasan A. O., et al. (2017). Combustion, Performance, and Selective Catalytic Reduction of NOx for a Diesel Engine Operated with Combined Tri Fuel (H-2, CH4, and Conventional Diesel). Energy. 1(119), 901–910.
  • 12. Abu Mansor M. R., Abbood M. M., Mohamad T. I. (2017). The Influence of Varying Hydrogen-Methane-Diesel Mixture Ratio on the Combustion Characteristics and Emissions of a Direct Injection Diesel Engine. Fuel. 190(4), 281–291.
  • 13. Alrazen H. A., Abu Talib A. (2016). A Two-Component CFD Study of the Effects of H-2, CNG, and Diesel Blend on Combustion. International Journal of Hydrogen Energy 41(24), 10483–10495.
  • 14. Talibi M., Balachandran R., Ladommatos N. (2017). Influence of Combusting Methane-Hydrogen Mixtures on Compression Ignition Engine Exhaust Emissions snd In-Cylinder Gas Composition. International Journal of Hydrogen Energy. 42(4), 2381–2396.
  • 15. Tangoz S., Akansu S. O., Kahraman N., et al. (2015). Effects of Compression Ratio on Performance and Emissions of a Modified Diesel Engine Fueled by HCNG. International Journal of Hydrogen Energy. 40(44), 15374–15380.
  • 16. Mahmood H. A., Adam N. M., Sahari B. B., et al. (2017). New Design of a CNG-H-2-AIR Mixer for Internal Combustion Engines: An Experimental and Numerical Study. Energies. 10(9), 1373.
  • 17. Wang H., Yao M., Reitz R. D. (2013). Development of a Reduced Primary Reference Fuel Mechanism for Internal Combustion Engine Combustion Simulations. Energy Fuels. 27(12), 7843–7853.
  • 18. Maghbouli A., Saray R. K., Shafee S., Ghafouri J. (2013). Numerical Study of Combustion and Emission Characteristics of Dual-Fuel Engines Using 3D-CFD Models Coupled with Chemical Kinetics. Fuel 106, 98–105.
  • 19. Han Z. Y., Reitz R. D. (1997). A Temperature Wall Function Formulation for Variable-Density Turbulent Flows with Application to Engine Convective Heat Transfer Modeling. International Journal of Heat & Mass Transfer. 40(3), 613–625.
  • 20. Han Z., Reitz R. D. (1995). Turbulence Modeling of Internal Combustion Engines Using RNG K-Ε Models. Combustion Science and Technology. 106, 267–95.
  • 21. Butler T. D., Cloutman L. D., Dukowicz J. K., Ramshaw D.J. (1981). Multidimensional numerical simulation of reactive flow in internal combustion engines. Progress in Energy & Combustion ence. 7(4), 293–315.
  • 22. Beale J. C., Reitz R. D. (1999). Modeling Spray Atomization with the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model. Atomization and Sprays. 9(6), 623–650.
  • 23. Feng S. (2017). Numerical Study of the Performance and Emission of a Diesel-Syngas Dual Fuel Engine. Mathematical Problems in Engineering.10, 1–12.
  • 24. Colket M. B., Spadaccini L. J. (2012). Scramjet Fuels Autoignition Study. Journal of Propulsion and Power. 17(2), 315–323.
  • 25. Verhelst S., Joen C. T., Coillie J. V., et al. (2011). A Correlation for the Laminar Burning Velocity for Use in Hydrogen Spark Ignition Engine Simulation. International Journal of Hydrogen Energy. 36(1), 957–974.
  • 26. D’Andrea T., Henshaw P. F., Ting S. K. (2004). The Addition of Hydrogen to a Gasoline-Fuelled SI Engine. International Journal of Hydrogen Energy. 29(14), 1541–1552.
  • 27. Li W., Liu Z., Wang Z. (2016). Experimental and Theoretical Analysis of the Combustion Process at Low Loads of a Diesel Natural Gas Dual-Fuel Engine. Energy. 94, 728–741.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0461c37f-f6e4-482a-a795-97e313f31cfe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.