PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of silicon application under Mn excessive nutrition on yielding of hydroponically grown lettuce (Lactuca sativa L.)

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ stosowania krzemu w warunkach nadmiernego żywienia manganem na plonowanie uprawianej hydroponicznie sałaty (Lactuca sativa L.)
Języki publikacji
EN
Abstrakty
EN
The aim of the study was the evaluation of different concentrations of silicon effect and high levels of manganese in the nutrient medium on the yielding and nutrient status of hydroponically grown lettuce cv. 'Sunny'. Plants were grown in rockwool in closed fertigation system with nutrient solution recirculation. The following levels of silicon were studied: 0.21, 0.42 and 0.63 mg⋅dm⁻³. The source of silicon was fertilizer contain orthosilicic acid (0.6% Si). Control combination was plants without Si nutrition. Silicon nutrition significantly influenced on content of macroelements in aboveground parts of plant: decreasing of nitrogen (for 0.21 and 0.63 mg Si⋅dm⁻³), increasing of: phosphorus (for 0.42 and 0.63 mg Si⋅dm⁻³), potassium (for 0.21 and 0.42 mg Si⋅dm⁻³), calcium (for all the Si-treatment) and magnesium (only for 0.21 mg Si⋅dm⁻³) comparing with control. In case of microelements Si significantly reduced zinc content (only in case 0.63 mg Si⋅dm⁻³) and iron (for all the Si-treatment), with lack of significantly influence in case of manganese, copper and sodium. Increasing silicon nutrition significantly and positively influenced on plant yielding.
PL
Celem badań była ocena wpływu zróżnicowanych stężeń krzemu i wysokiego poziomu manganu w pożywce na plonowanie i stan odżywienia uprawianej hydroponicznie sałaty odm. 'Sunny'. Rośliny uprawiano w wełnie mineralnej z zastosowaniem fertygacji w systemie zamkniętym z recyrkulacją pożywki. Badano następujące poziomy krzemu: 0,21, 0,42 i 0,63 mg⋅dm⁻³. Źródłem krzemu był nawóz zawierający kwas ortokrzemowy (0,6% Si). Kombinacją kontrolną były rośliny nie żywione krzemem. Żywienie krzemem wpływało istotnie na zawartość makroskładników w nadziemnych częściach roślin: obniżenie azotu (0,21 i 0,63 mg Si⋅dm⁻³), wzrost zawartości: fosforu (0,42 i 0,63 mg Si⋅dm⁻³), potasu (0,21 i 0,42 mg Si⋅dm⁻³), wapnia (wszystkie kombinacje z Si) i magnezu (tylko 0,21 mg Si⋅dm⁻³) w porównaniu z kontrolą. W przypadku mikroskładników Si istotnie obniżał zawartość cynku (tylko dla 0,63 mg Si⋅dm⁻³) i żelaza (wszystkie badane kombinacje), przy braku istotnego wpływu na zawartość manganu, miedzi i sodu. Wzrastające żywienie krzemem istotnie i pozytywnie wpływało na plonowanie roślin.
Słowa kluczowe
Twórcy
autor
  • Poznan University of Life Sciences, Faculty of Horticulture And Landscape Architecture, Department of Plant Nutrition, Poznań, Poland
Bibliografia
  • [1] Millaleo R., Reyes-Díaz M., Ivanov A. G., Mora M. L., Alberdi M., Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J. Soil Sci. Plant Nutr., 10(4), 2010, 476-494.
  • [2] Epstein E., The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. USA, 91, 1994, 11-17.
  • [3] Bacchus G. L., An evaluation of the influence of biodynamic practices including foliarapplied silica spray on nutrient quality of organic and conventionally fertilized lettuce (Lactuca sativa L.). J. of Organic Sys., 5,1, 2010, 4-13.
  • [4] Ma J. F., Takahashi E., Soil, fertilizer, and plant silicon research in Japan. Elsevier, 2002, The Netherlands, 281.
  • [5] Voogt W., Sonneveld C., Silicon in horticultural crops grown in soilless culture. Studies in Plant Sci., 8, 2001, 115-131.
  • [6] Górecki R. S., Danielski-Busch W., Effect of silicate fertilizers on yielding of greenhouse cucumber (Cucumis sativus L.) in container cultivation. J. Elem., 14(1), 2009, 71-78.
  • [7] Jarosz Z., The effect of silicon application and type of substrate on yield and chemical composition of leaves and fruit of cucumber. J. Elem., 3, 2013, 403-414.
  • [8] Liang Y., Sun W., Zhu Y.-G., Christie P., Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environ. Pollution, 147, 2007, 422-428.
  • [9] Epstein E., Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 1999, 641-664.
  • [10] Shi G., Qingsheng C., Liu C., Li Wu, Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regul., 61, 2010, 45-52.
  • [11] Datnoff L. E., Rodrigues F. A., 2005. The role of silicon in suppressing rice diseases. APSnet Features. http://www.apsnet.org/publications/apsnetfeatures/Pages/SiliconInRiceDiseases.aspx.
  • [12] Fauteux F., Remus-Borel W., Menzies J. G., Belanger R. R., Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol. Lett., 249, 2005, 1-6.
  • [13] Horst W. J., Marschner H., Effect of silicon on manganese tolerance of bean plants (Phaseolus vulgaris L.). Plant and soil, 50, 1978, 287-303.
  • [14] Horiguchi T., Morita S., Mechanism of manganese toxicity and tolerance of plants VI. Effect of silicon on alleviation of manganese toxicity of barley. J. of Plant Nutr., 10(17), 1987, 2299-2310.
  • [15] Rogalla H., Römheld V., Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant, Cell and Environment, 25, 2002, 549-555.
  • [16] Maksimović D. J., Bogdanovic J., Maksimović V., Nikolic M., Silicon modulates the metabolism and utilization of phenolic compounds in cucumber (Cucumis sativus L.) grown at excess manganese. J. Plant Nutr. Soil Sci., 170, 2007, 739-744.
  • [17] Horiguchi T., Mechanism of manganese toxicity and tolerance of plants IV. Effects of silicon on alleviation of manganese toxicity of rice plants. Soil Sci. Plant Nutr., 34 (1), 1988, 65-73.
  • [18] Zanão Júnior L. A., Ferreira Fontes R. L., Lima Neves J. C., Korndörfer G. H., Vinícius Tavares de Ávila V., Rice grown in nutrient solution with doses of manganese and silicon. R. Bras. Ci. Solo, 34, 2010, 1629-1639.
  • [19] Iwasaki K., Maier P., Fecht M., Horst W. J., Effects of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in cowpea (Vigna unguiculata L. Walp.). Plant and Soil,238, 2002, 281-288.
  • [20] Führs H., Götze S., Specht A., Erban A., Gallien S., Heintz D., Van Dorsselaer A., Kopka J., Braun H.-P., Horst W. J., Characterization of leaf apoplastic peroxidases and metabolites in Vigna unguiculata in response to toxic manganese supply and silicon. J. of Exp. Botany, 60, 6, 2009, 1663-1678.
  • [21] Aziz T., Ahmad M., Rahmatullach M., Silicon nutrition and crop production: a review. Pak. J. Agri. Sci., 39(3), 2002, 181-187.
  • [22] IUNG, 1972. Analytical methods in agricultural-chemistry stations. Part II. Plant analyses. Pulawy, Poland.
  • [23] Chen W., Yao X., Cai K., Chen J., Silicon alleviated drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol. Trace Elem. Res., 141(1), 2011, 67-76.
  • [24] Kleiber T., Effect of increase manganese nutrition on content of nutrient and yield of lettuce (Lactuca sativa L.) in hydroponic cultivation. Ecol. Chem. Eng. S., 2014 (in press after revision).
  • [25] Maksimović D. J., Mojović M., Maksimović V., Romheld V., Nikolic M., Silicon ameliorates manganese toxicity in cucumber by decreasing hydroxyl radical accumulation in the leaf apoplast. J. Exp. Bot., 63(7), 2012, 1-10.
  • [26] Gholami Y., Falah A., Effects of two different sources of silicon on dry matter production, yield and yield components of rice, Tarom Hashemi variety and 843 Lines. Int. J. of Agric. and Crop Sci., 5-3, 2013, 227-231.
  • [27] Shi Q. H., Bao Z. Y., Zhu Z. J., He Y., Qian Q. Q., Yu J. Q., Silicon mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascrobate peroxidase. Phythochemistry, 66, 2005, 1551-1559.
  • [28] Gunes A., Inal A., Bagci E. G., Coban S., Sahin O., Silicon increases boron tolerance and reduces oxidative damage of wheat grown in soil with excess boron. Biologia Plantarum, 51(3), 2007, 571-574.
  • [29] Lu G., Cao J., Effects of silicon on earliness and photosynthetic characteristics of melon. Acta Hort., Sinica. 28, 2001, 421-424.
  • [30] Kamenidou S., Cavins T. J., Silicon supplements affect horticultural traits of greenhouse-produced ornamental sunflowers. Hortscience, 43(1), 2008, 236-239.
  • [31] Sacała E., Role of silicon in plant resistance to water stress. J. Elementol., 14(3), 2009, 619-630.
  • [32] Lee J. S., Park J. H., Suk Han K., Effects of potassium silicate on growth, photosynthesis and inorganic ion absorption in cucumber hydroponics. J. Kor. Soc. Hort. Sci., 45(5), 2000, 480-484.
  • [33] Henriet C., Draye X., Oppitz I., Swennen R., Delvaux B., Effects, distribution and uptake of silicon in banana (Musaspp.) under controlled condition. J. Plant Soil, 287, 2006, 359-374.
  • [34] Kaya C., Tuna L., Higgs D., Effect of silicon on plant growth and mineral nutrition of maize grown under water – stress condition. J. Plant Nutrition, 29, 2006, 1469-1480.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-045f922f-f7c6-49d2-ba36-7ddb1f7d96a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.