PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Central limit theorem for a Gaussian incompressible flow with additional Brownian noise

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We generalize the result of Komorowski and Papanicolaou published in [7]. We consider the solution of stochastic differential equation dX (t) = V (t, X(t)) dt + √2κdB(t), where B(t) is a standard d-dimensional Brownian motion and V (t, x), (t, x) ∈ R × Rd, is a d-dimensional, incompressible, stationary, random Gaussian field decorrelating in finite time. We prove that the weak limit as ε ↓ 0 of the family of rescaled processes Xε(t) = εX(t/ε2) exists and may be identified as a certain Brownian motion.
Rocznik
Strony
413--434
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
  • UMPA, ENS Lyon, UMR 5669 CNRS, 46 allée d'Italie, 69364 Lyon cedex 07, France
Bibliografia
  • [1] R. J. Adler, The Geometry of Random Fields, Wiley, New York 1981.
  • [2] R. I. Adler, An introduction to continuity, extrema, and related topics for general Gaussian processes, Inst. Math. Statist., Hayward Lecure Notes, Vol. 12 (1990).
  • [3] R. A. Carmona and L. Xu, Homogenization for time-dependent two-dimensional incompressible Gaussian flows, Ann. Appl. Probab. 7 (1997), pp. 265-279.
  • [4] A. Fannjiang and T. Komorowski, An invariance principle for diffusion in turbulence, Ann. Probab. 27 (1997), pp. 751-781.
  • [5] A. Fannjiang and T. Komorowski, Turbulent diffusion in Markovian flows, Ann. Appl. Probab. 9 (1999), pp. 591-610.
  • [6] D. Geman and J. Horowitz, Random shifts which preserve measure, Proc. Amer. Math. Soc. 49 (1975), pp. 143-150.
  • [7] T. Komorowski and G. C. Papanicolaou, Motion in a Gaussian incampressible flow, Ann. Appl. Probab. 7 (1997), pp. 229-264.
  • [8] S. M. Kozlov, The averaging method and walks in inhomogeneous environments, Uspekhi Mat. Nauk 40 (1985) pp. 73-145.
  • [9] C. Landim, S. Olla and H. T. Yau, Convection-diffusion equation with space-time ergodic random flow, Probab. Theory Related Fields 112 (1998), pp. 203-220.
  • [10] G. C. Papanicolaou and S. R. S. Varadhan, in: Random Fields, J. Fritz and J. L. Lebowitz (Eds.), Colloq. Math. Soc, János Bolyai, North-Holland, 27 (1982), pp. 835-873.
  • [11] S. C. Port and C. Stone, Random measures and their application to motion in an incompressible fluid, J. Appl. Probab. 13 (1976), pp. 498-506.
  • [12] Yu. A. Rozanov, Stationary Random Processes, Holden-Day Inc., 1967.
  • [13] C. J. Stone, Weak convergence of stochastic processes defined on semi-infinite time intervals, Proc. Amer. Math. Soc. 14 (1963), pp 694-696.
  • [14] D. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, Springer, Berlin-Heidelberg-New York 1979.
  • [15] G. I. Taylor, Diffusions by continuous movements, Proc. London Math. Soc. Ser. 2, 20 (1923), pp. 196-211.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-045e68b5-5662-492d-8bd4-7b4dcde083e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.