PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of ground waste glass addition on concrete prepared with their participation properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Caring for the environment, in accordance with the principles of sustainable development, as well as the increase in the standard of living of society, introduces the need to conduct proper waste management. Construction is an industry with great potential for the management of glass waste as part of material recycling. The construction sector is characterized by high material consumption, with a limited amount of natural resources, meaning that research is constantly being performed on the possibility of replacing them with other common ingredients. A feature of the building materials industry is also the pursuit of continuous improvement of the properties of manufactured materials. The paper presents the research results on the impact of the partial replacement of Portland cement and aggregate with glass waste on strength parameters and frost resistance. For the purpose of experimental work, a concrete mix based on the C20/25 standard concrete with CEM I 42.5R Portland cement, in which from 0 to 20% of the cement or aggregate weight is replaced with glass waste (i.e., glass flour and glass cullet), is designed. In the test range, the glass flour slightly affected the deterioration of the compressive strength, while the glass cullet had no effect on the compressive strength after 56 days of maturation. Moreover, the addition of glass flour increases the bending strength, while the addition of glass cullet maintains a comparable bending strength compared to the reference concrete. The obtained concretes are frost-resistant concrete F150.
Rocznik
Strony
46--53
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Institute of Civil Engineering, Warsaw University of Life Sciences 166 Nowoursynowska St., 02-787 Warsaw, Poland
  • Institute of Civil Engineering, Warsaw University of Life Sciences 166 Nowoursynowska St., 02-787 Warsaw, Poland
  • Institute of Civil Engineering, Warsaw University of Life Sciences 166 Nowoursynowska St., 02-787 Warsaw, Poland
autor
  • Institute of Civil Engineering, Warsaw University of Life Sciences 166 Nowoursynowska St., 02-787 Warsaw, Poland
Bibliografia
  • 1. Bahij, S., Omary, S., Feugeas, F. & Faqiri, A. (2020) Fresh and hardened properties of concrete containing different forms of plastic waste – A review. Waste Management 113, pp. 157–175. doi: 10.1016/j.wasman.2020.05.048.
  • 2. Belebchouche, C., Moussaceb, K., Bensebti, S., AïtMokhtar, A., Hammoudi, A. & Czarnecki, S. (2021) Mechanical and microstructural properties of ordinary concrete with high additions of crushed glass. Materials 14(8), 1872, doi: 10.3390/ma14081872.
  • 3. Devaraj, R., Jordan, J., Gerber, C. & Olofinjana, A. (2021) Exploring the effects of the substitution of freshly mined sands with recycled crushed glass on the properties of concrete. Applied Sciences 11(8), 3318, doi: 10.3390/ app11083318.
  • 4. European Environment Agency (2021) EEA-Eionet strategy 2021–2030. Publication Office, doi: 10.2800/92395.
  • 5. Flores Medina, N., Flores Medina, D., HernándezOlivares, F. & Navacerrada, M.A. (2017) Mechanical and thermal properties of concrete incorporating rubber and fibers from tire recycling. Construction and Building Materials 144, pp. 563–573, doi: 10.1016/j.conbuildmat.2017.03.196.
  • 6. Gimenez-Carbo, E., Soriano, L., Roig-Flores, M. & Serna, P. (2021) Characterization of glass powder from glass recycling process waste and preliminary testing. Materials (Basel) 14(11), 2971, doi: 10.3390/ma14112971.
  • 7. Golonka, P., Nocuń, M. & Nocuń-Wczelik, W. (2017) The effect of chromium (VI) reducers on the hydration process of portland cement paste. Cement Wapno Beton, Cement Lime Concrete 2017(1), pp. 39–51.
  • 8. Hendi, A., Mostofinejad, D., Sedaghatdoost, A., Zohrabi, M., Naeimi, N. & Tavakolinia, A. (2019) Mix design of the green self-consolidating concrete: Incorporating the waste glass powder. Construction and Building Materials 199, pp. 369–384, doi: 10.1016/j.conbuildmat.2018.12.020.
  • 9. pp. 369–384, doi: 10.1016/j.conbuildmat.2018.12.020. 9. International Energy Agency (2019) 2019 Global Status Report for Buildings and Construction.
  • 10. Jurczak, R., Szmatuła, F., Rudnicki, T. & Korentz, J. (2021) Effect of ground waste glass addition on the strength and durability of low strength concrete mixes. Materials (Basel) 14(1), 190, doi: 10.3390/ma14010190.
  • 11. Łasica, W. & Małek, M. (2021a) Cement-glass composite as a method to develop of waste glass (in Polish). In: Kalbarczyk, K. & Skrzątek, K. (eds) Wybrane problemy ochrony środowiska – wybrane aspekty. Lublin, Poland: Wydawnictwo Naukowe TYGIEL, pp. 60–79.
  • 12. Łasica, W. & Małek, M. (2021b) Effect of waste steel addition on cement-glass composite properties (in Polish). In: Skrzątek, K. & Mołdoch-Mendoń, I. (eds) Wybrane zagadnienia z zakresu nanotechnologii, inżynierii materiałowej oraz termodynamiki. Lublin, Poland: Wydawnictwo Naukowe TYGIEL, pp. 142–158.
  • 13. Małek, M., Łasica, W., Jackowski, M. & Kadela, M. (2020) Effect of waste glass addition as a replacement for fine aggregate on properties of mortar. Materials (Basel) 13(14), 3189, doi: 10.3390/ma13143189.
  • 14. Mhaya, A.M., Huseien, G.F., Zainal Abidin, A.R. & Ismail, M. (2020) Long-term mechanical and durable properties of waste tires rubber crumbs replaced GBFS modified concretes. Construction and Building Materials 256, 119505, doi: 10.1016/j.conbuildmat.2020.119505.
  • 15. Mohammadinia, A., Wong, Y., Arulrajah, A. & Horpibulsuk, S. (2019) Strength evaluation of utilizing recycled plastic waste and recycled crushed glass in concrete footpaths. Construction and Building Materials 197, pp. 489–496, doi: 10.1016/j.conbuildmat.2018.11.192.
  • 16. Ogrodnik, P. & Szulej, J. (2018) The assessment of the possibility of using sanitary ceramic waste as concrete aggregate — Determination of the basic material characteristics. Applied Sciences 8(7), 1205, doi: 10.3390/app8071205.
  • 17. PKN (2004) PN-B-06265: 2004. National supplement to the standard PN EN 206-1: 2003.
  • 18. PKN (2011a) PN-EN 12350-7: 2011. Testing fresh concrete. Part 7: Air content – Pressure methods.
  • 19. PKN (2011b) PN-EN 12350-2: 2011. Testing fresh concrete. Part 2: Slump-test.
  • 20. PKN (2011c) PN-EN 12350-6: 2011. Testing fresh concrete. Part 6: Density.
  • 21. PKN (2011d) PN-EN 12390-3: 2011. Testing hardened concrete. Part 3: Compressive strength of test specimens.
  • 22. PKN (2011e) PN-EN 12390-5: 2011. Testing hardened concrete. Part 5: Flexural strength of test specimens.
  • 23. PKN (2012) PN-EN 197-1: 2012. Cement Part 1. Composition, specifications and conformity criteria for common cements.
  • 24. PKN (2013) PN-EN 206: 2013 + A2: 2021-08. Concrete. Specification, performance, production and conformity.
  • 25. Ramdani, S., Guettala, A., Benmalek, M.L. & Aguiar, J.B. (2019) Physical and mechanical performance of concrete made with waste rubber aggregate, glass powder and silica sand powder. Journal of Building Engineering 21, pp. 302–311, doi: 10.1016/j.jobe.2018.11.003.
  • 26. Szulej, J., Ogrodnik, P. & Klimek, B. (2019) Zeolite tuff and recycled ceramic sanitary ware aggregate in production of concrete. Sustainability 11(6), 1782, doi: 10.3390/ su11061782.
  • 27. Weng, C.-H., Lin, D.-F. & Chiang, P.-C. (2003) Utilization of sludge as brick materials. Advance in Environmental Research 7(3), pp. 679–685, doi: 10.1016/S1093- 0191(02)00037-0.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-045b02c3-aec6-43b7-b9ad-75500cfedf27
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.