PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessing electrode wear: The role of spot weld count in material degradation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the degradation of electrodes during the resistance spot-welding process and its impact on both the welding process itself and the properties of the welded components. To simulate some of the most challenging degradation conditions, 1.5 mm thick electro-galvanized steel sheets were selected as the welding material DX51D+Zn275. For this type of material, the zinc coating tends to react with the electrode material during welding, forming a Zn-enriched layer, which accelerates electrode degradation. The experiments were conducted using an ELMA-Tech GmbH resistance spot welder. Short welding times were applied, with process parameters set at 70 ms, 12 kA, and an electrode pressing force of 2.5 kN. A total of 1100 welds were made under these conditions. Samples for mechanical testing and microstructural analysis were taken at 300, 500, and 1100 welds. A uniaxial tensile shear test was performed on the welded samples to determine the shear force at which failure occurred. Microscopic analysis was conducted using an optical microscope equipped for surface profiling and roughness measurements. Additionally, a scanning electron microscope (SEM) was used to analyze the electrodes after the welding process. Initial electrode roughness, measured as Rz = 1978.73 µm and Ra = 576.31 µm, displayed progressive wear and surface contamination, including zinc and burnt oil deposits that altered contact geometry, affecting electrode longevity. Roughness parameters evolved with weld counts and electrode wear correlated strongly with shear force. Chemical analyses have revealed the formation of a Zn-enriched layer and micro-cracking in electrodes, necessitating corrective machining after 1,100 welds to restore efficiency. These findings underscore the importance of managing electrode degradation to maintain weld quality and optimize industrial welding processes.
Twórcy
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, aleja A. Mickiewicza 30, 30-59 Krakow, Poland
  • PRAXWELD Sp. z o.o., ul. Łącznik 21A, 33-300 Nowy Sącz, Poland
  • Faculty of Materials Science and Physics, Cracow University of Technology, ul. Podchorążych 1, 30-084 Kraków, Poland
  • Faculty of Mechanics and Technology, Rzeszów University of Technology, ul. Kwiatkowskiego 4, 37-450 Stalowa Wola, Poland
  • PRAXWELD Sp. z o.o., ul. Łącznik 21A, 33-300 Nowy Sącz, Poland
Bibliografia
  • 1. Schmidt M., Spieth H., Haubach C., Kühne C. Resistance spot welding made easy, in: 100 Pioneers in Efficient Resource Management, 978th-3rd-662nd- ed., Springer Spektrum, Berlin, Heidelberg, Berlin, Heidelberg, 2019: pp. 438–441. https://doi.org/10.1007/978-3-662-56745-6_94.
  • 2. Shen Y., Xia Y.-J., Li H., Zhou L., Li Y.-B., Pan H.-T. A novel expulsion control strategy with abnormal condition adaptability for resistance spot welding, Journal of Manufacturing Science and Engineering 2021; 143. https://doi.org/10.1115/1.4051011.
  • 3. Pouranvari M., Marashi S.P.H. Critical review of automotive steels spot welding: process, structure and properties, Science and Technology of Welding and Joining 2013; 18: 361–403. https://doi.org/10.1179/1362171813Y.0000000120.
  • 4. Zhou K., Yao P. Overview of recent advances of process analysis and quality control in resistance spot welding, Mech Syst Signal Process 2019; 124: 170–198. https://doi.org/10.1016/j.ymssp.2019.01.041.
  • 5. Raut M., Achwal V. Optimization of spot welding process parameters for maximum tensile shear strength, International Journal of Mechanical Engineering and Robotics Research 2014; 3: 506–517.
  • 6. Hamidinejad S.M., Kolahan F., Kokabi A.H. The modeling and process analysis of resistance spot welding on galvanized steel sheets used in car body manufacturing, Mater Des 2012; 34: 759–767. https://doi.org/10.1016/j.matdes.2011.06.064.
  • 7. Kaščák Ľ., Cmorej D., Spišák E., Slota J. Joining the high-strength steel sheets used in car body production, Advances in Science and Technology Research Journal 2021; 15: 184–196. https://doi.org/10.12913/22998624/131739.
  • 8. Ravikiran K., Xu P., Li L. A critical review on high-frequency electric-resistance welding of steel linepipe, Journal of Manufacturing Processes 2024; 124: 753–777. https://doi.org/10.1016/j.jmapro.2024.06.046.
  • 9. Wagner M., Kolb S. Efficiency improvements for high frequency resistance spot welding, in: 2013 15th European Conference on Power Electronics and Applications (EPE), 2013; 1–9. https://doi.org/10.1109/EPE.2013.6634720.
  • 10. Aydin K., Hıdıroğlu M., Kahraman N. Enhancing weld strength in high-strength steels: the role of regional preheating in RSW, Materials Testing 2024; 66: 328–346. https://doi.org/10.1515/mt-2023-0241.
  • 11. Mathiszik C., Köberlin D., Heilmann S., Zschetzsche J., Füssel U. General approach for inline electrode wear monitoring at resistance spot welding, Processes 2021; 9. https://doi.org/10.3390/pr9040685.
  • 12. Ahola A., Savolainen J., Brask L., Björk T. Fatigue enhancement of welded thin-walled tubular joints made of lean duplex steel, Journal of Constructional Steel Research 2024; 218. https://doi.org/10.1016/j.jcsr.2024.108738.
  • 13. Matsuyama K., Matsuyama K. Spot welding system and method for sensing welding conditions in real time, U.S. Patent No. 6,506,997, 2001.
  • 14. Matsui K. Research on practical application of dual frequency induction hardening to gears, JSAE Review 1998; 19: 358–360. https://doi.org/10.1016/S0389-4304(98)00027-7.
  • 15. Senkara J., Zhang H., Hu S. Expulsion prediction in resistance spot welding, WELDING JOURNAL-NEW YORK 2004; 83: 123–125.
  • 16. Williams N.T., Parker J.D. Review of resistance spot welding of steel sheets: Part 1 - Modelling and control of weld nugget formation, International Materials Reviews 2004; 49: 45–75. https://doi.org/10.1179/095066004225010523.
  • 17. Shome M., Chatterjee S. Effect of material properties on contact resistance and nugget size during spot welding of low carbon coated steels, ISIJ International 2009; 49: 1384–1391. https://doi.org/10.2355/isijinternational.49.1384.
  • 18. Başkaya Ü., Uzun R., Atapek H., Kılıç Y., Polat Ş. Effect of coating type on electrode degradation and its life in resistance spot welding of a low carbon steel, Eng Fail Anal 2024; 157. https://doi.org/10.1016/j.engfailanal.2023.107879.
  • 19. Simmons J.G. Electric tunnel effect between dissimilar electrodes separated by a thin insulating film, J Appl Phys 1963; 34: 2581–2590. https://doi.org/10.1063/1.1729774.
  • 20. Kogut L., Komvopoulos K. Analysis of interfacial adhesion based on electrical contact resistance measurements, J Appl Phys 2003; 94: 6386–6390. https://doi.org/10.1063/1.1618925.
  • 21. Feulvarch E., Robin V., Bergheau J.M. Resistance spot welding simulation: A general finite element formulation of electrothermal contact conditions, J Mater Process Technol 2004; 153–154: 436–441. https://doi.org/10.1016/j.jmatprotec.2004.04.096.
  • 22. Rogeon P., Carre P., Costa J., Sibilia G., Saindrenan G. Characterization of electrical contact conditions in spot welding assemblies, J Mater Process Technol 2008; 195: 117–124. https://doi.org/10.1016/j.jmatprotec.2007.04.127.
  • 23. Na S.J., Park S.W. A theoretical study of electrical and thermal response in resistance spot welding, 1996; 75.
  • 24. Kahraman N. The influence of welding parameters on the joint strength of resistance spot-welded titanium sheets, Mater Des 2007; 28: 420–427. https://doi.org/10.1016/j.matdes.2005.09.010.
  • 25. Kubit A., Kłosowski G., Berezowski W. The use of artificial intelligence for quality assessment of refill friction stir spot welded thin joints, Advances in Science and Technology Research Journal 2024; 18: 45–57. https://doi.org/10.12913/22998624/185618.
  • 26. Wei P.S., Wang S.C., Lin M.S. Transport phenomena during resistance spot welding, Journal of Heat Transfer (1996) 118: 762–773. https://doi.org/10.1115/1.2822697.
  • 27. Galler M., Enzinger N., Sommitsch C. The estimation of the contact interface temperature during resistance spot welding of zinc coated steels using numerical technique, Materialwissenschaft Und Werkstofftechnik 41 2010; 925–930. https://doi.org/10.1002/mawe.201000686.
  • 28. Gedeon S.A., Eagar T.W. Resistance spot welding of galvanized steel: Part I. Material variations and process modifications, Metallurgical Transactions B 1986; 17: 879–885. https://doi.org/10.1007/BF02657151.
  • 29. Bowers R., Sorensen C., Eagar T. Electrode geometry in resistance spot welding, Welding Journal 1990; 69: 45S.
  • 30. Aslanlar S., Ogur A., Ozsarac U., Ilhan E. Welding time effect on mechanical properties of automotive sheets in electrical resistance spot welding, Materials and Design 2008; 29: 1427–1431. https://doi.org/10.1016/j.matdes.2007.09.004.
  • 31. Chan K.R. Weldability and Degradation Study of Coated Electrodes for Resistance Spot Welding, Waterloo, Ontario, Canada 2005; 1–120.
  • 32. Howe P., Kelley S.C. A Comparison of the resistance spot weldability of bare, hot–dipped, galvannealed, and electrogalvanized DQSK sheet steels, SAE Transactions 1988; 97: 138–152.
  • 33. Zhang Y.S., Wang H., Chen G.L., Zhang X.Q. Monitoring and intelligent control of electrode wear based on a measured electrode displacement curve in resistance spot welding, Measurement Science and Technology 2007; 18: 867–876. https://doi.org/10.1088/0957-0233/18/3/040.
  • 34. Ling S.F., Wan L.X., Wong Y.R., Li D.N. Input electrical impedance as quality monitoring signature for characterizing resistance spot welding, NDT and E International 2010; 43: 200–205. https://doi.org/10.1016/j.ndteint.2009.11.003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0450a1c6-db10-4e2c-9be9-c2d52136fb6d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.