PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental results and minimizing NOX emissions’ analysis from the fluidized bed boiler of type OE700

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article shows a solution to the problem of reducing nitrogen oxide (NOx) emissions to a concentration of 150 mg/m3, on an example of 261 MWe fluidized bed boiler. It is a lignite-fired boiler. To reduce emissions a selective noncatalytic reduction (SNCR) method was used. Among the others optimization of urea injection nozzles’ position through a series of on-site experiments after previous 3D simulations were carried out. The result of the experiments was to reduce the number of injection nozzles, determine their optimal position and determine urea streams and injection angles. Major and interesting findings and actual contribution of this manuscript to the field is: dependence of nitrogen oxide NOx emissions on about 100 different variables determined by the correlation with nitrogen oxide emissions’ analysis. Individual variables such as temperature, O2 in exhaust gases, air-to-coal ratio, mass flow and pressure of urea are not sufficient to describe mathematically the NOx capture process. Technical novelty of the SNCR system consists of the urea stream control systems, which can maintain either a constant urea concentration or a constant urea pressure. The NOx reduction systems used so far do not use pressure control. It is experimentally shown that reaction between NOx and reagent can be achieved at lower temperature equal to 700°C in some parts of boiler, which is lower temperature than reported in the literature.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
76--89
Opis fizyczny
Bibliogr. 28 poz., fig., tab.
Twórcy
  • Polimex Mostostal, Jana Pawla II 12, 00-124 Warszawa
  • Faculty of Mechanical and Power Engineering, Wroclaw University of Technology
Bibliografia
  • [1] Pronobis M., Hernik B., Wejkowski R., Kinetics of low NO x corrosion of waterwalls in utility boilers. Rynek Energii 2010, 91, 121-128.
  • [2] Ostrowski P., Kalisz S., Wejkowski R., Investigations of low NOx corrosion hazards in boiler OP650 of the Rybnik power plant using a mobile monitoring system , Rynek Energii 2011, 94, 161-165.
  • [3] Lasalle A., Roizard C., Midoux N., Bourret P., Dyens P. J., Removal of NOx from Flue Gases Using the Urea Acidic Process: Kinetics of the Chemical Reaction of Nitrous Acid with Urea, Ind. Eng. Chem. Res. 1992,31, 777-780. https://doi.org/10.1021/ie00003a020
  • [4] Lichota J., NO x and CO reduction in power boiler. In Air conditioning protection & district heating 2008: XII International Conference, Wrocław-Szklarska Poręba, Poland, 26-29 June 2008; Eds M. Besler, M. Fijewski, M. Klimczak; Polish Association of Sanitary Engineers and Technicians: Wrocław, Poland, 2008, 273-278.
  • [5] Lichota J., Sąsiadek J., Test signals for NO x emission identification of coal boiler, Rynek Energii 2006, 6, 59-67.
  • [6] Hack H., Giglio R., Graf R., Application of Circulating Fluidized Bed Scrubbing Technology For Multi-Pollutant Removal. In The 38th International Technical Conference on Clean Coal & Fuel Systems, Clearwater Conference, Clearwater, Florida, USA, 2 - 6 June 2013; Sahkestad B.A.; Publisher: Coal Technologies Associates, 2013.
  • [7] Lichota J., Sąsiadek J., Artificial neural network NO x emission model in large power boiler, Systems: Journal of Transdisciplinary Systems Science 2006, 11, 51-59.
  • [8] Blaszczuk A., Nowak W., Jagodzik S., Effects of operating conditions on deNOx system efficiency in supercritical circulating fluidized bed boiler, Journal of Power Technologies 2013, 93, 1-8.
  • [9] Niu Y., Shang T., Zeng J., Wang S., Gong Y., Hui S., Effect of Pulverized Coal Preheating on NOx Reduction during Combustion, Energy & Fuels 2017, 31, 4436−4444. https://doi.org/10.1021/acs.energyfuels.6b02984
  • [10] Mirek P., Ziaja J., Klajny M., Nowak W., Jagodzik ; Experimental verification of the scaling rules for cold models of different scales. In Proceedings of the 11th International Conference on Fluidized Bed Technology 2014, 499-504.
  • [11] H. Xu and L. D. Smoot, S. C. Hill, Computational Model for NOx Reduction by Advanced Reburning, Energy & Fuels 1999, 13, 411-420. https://doi.org/10.1021/ef980090h
  • [12] Speth K., Murer M., Spliethoff H., Experimental Investigation of Nitrogen Species Distribution in Wood Combustion and Their Influence on NO x Reduction by Combining Air Staging and Ammonia Injection, Energy & Fuels 2016, 30, 5816−582. https://doi.org/10.1021/acs.energyfuels.6b00943
  • [13] Avdhesh Kr. Sharma, Equilibrium modeling of global reduction reactions for a downdraft (biomass) gasifier. Energy Conversion and Management 2008, 49, 832-842. https://doi.org/10.1016/j.enconman.2007.06.025
  • [14] Giltrap D. L., McKibbin R., Barnes G.R.G., A steady state model of gas-char reactions in a downdraft biomass gasifier. Solar Energy 2003,74, 85-91. https://doi.org/10.1016/S0038-092X(03)00091-4
  • [15] Jahromi R., Rezaei M., Samadi S.H., Sugarcane bagasse gasification in a downdraft fixed-bed gasifier: Optimization of operation conditions, ChemRxiv. 2020 - Preprint. https://doi.org/10.26434/chemrxiv.12361031.v1
  • [16] 16. Zhang et al., Simulation of a large methanol-to-olefins fluidized bed reactor with consideration of coke distribution. Chemical Engineering Science 2018, 189, https://doi.org/10.1016/j.ces.2018.05.056
  • [17] Krzywanski J., Czakiert T., Muskała W., Nowak W., Pacyna J., Emissions of CO 2 , CO, NO x and N 2 O from dried lignite combustion in oxygen-enriched O 2 /CO 2 atmospheres in a circulating fluidized bed boiler, Transactions of the Institute of Fluid-Flow Machinery 2016, 132, 71–85.
  • [18] Li Q.Y., Mi Z.D., Zhang Q.F. Study of NO x Emission Characteristics of a 1025t/h Coal-Fired Circulating Fluidized Bed Boiler. In Proceedings of the 20th International Conference on Fluidized Bed Combustion, Xi'an China, 18-21 May 2009; Eds Yue G., Zhang H., Zhao C., Luo Z.; Publisher: Springer, Berlin, Germany, 2009, 186-188. https://doi.org/10.1007/978-3-642-02682-9_23
  • [19] Yang C., Wu H., Deng K., He H., Sun L., Study on Powder Coke Combustion and Pollution Emission Characteristics of Fluidized Bed Boilers, Energies 2019, 12, 1424. http://dx.doi.org/10.3390/en12081424
  • [20] Liu X., Yang H., Lyu J., Optimization of Fluidization State of a Circulating Fluidized Bed Boiler for Economical Operation, Energies 2020, 13, 376. https://doi.org/10.3390/en13020376 [21] Moradian F., Pettersson A., Svärd S.H., Richards T., Co-Combustion of Animal Waste in a Commercial Waste-to-Energy BFB Boiler, Energies 2013, 6, 6170-6187. https://doi.org/10.3390/en6126170
  • [22] Zamorowski K., Aspects of adjusting the domestic energy sector to the emission standards of nitrogen oxides - impact of the applied technologies on boiler operation and costs of flue gas denitrification (in polish), Energetyka 2013, 6, 490-497.
  • [23] Salzmann R., Nussbaumer T., Fuel Staging for NOx Reduction in Biomass Combustion: Experiments and Modeling, Energy & Fuels 2001,15, 575-582. https://doi.org/10.1021/ef0001383
  • [24] Mirek P., Ziaja J.; The influence of sampling point on solids suspension density applied in scaling of the hydrodynamics of a supercritical CFB boiler; Chemical and Process Engineering 2011, 32, 391-399. doi: 10.2478/v10176-011-0031-5
  • [25] Mirek P., Ziaja J., Nowak W.; The influence of the inert material sampling location on the scaling of flow phenomena in a circulating fluidized bed boiler. In 21st International Conference on Fluidized Bed Combustion, Naples , Italy, June 3-6 2012; Arena U., Chirone R., Miccio M., Salatino P., vol. 21, 1050-1057.
  • [26] Mirek P., Ziaja J., Nowak W.; Verification of the scaling relationships for Lagisza 460MWe supercritical CFB boiler. In 21st International Conference on Fluidized Bed Combustion, Naples , Italy, June 3-6 2012; Arena U., Chirone R., Miccio M., Salatino P., vol. 21, 160-167.
  • [27] Pawlak-Kruczek H., Plutecki Z., Michalski M., Brown Coal Drying in a Fluidized Bed Applying a Low-Temperature Gaseous Medium, Drying Technology 2014, 32, 1334-1342. https://doi.org/10.1080/07373937.2014.909845
  • [28] Khartchenko N., Khartchenko V., Advanced energy systems, 2nd ed. ; CRC Press Taylor & Francis Group, 2013.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-044f7ecf-ea8d-4280-8226-a551d7d49cd3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.