PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Perspective applications of plasma-deposited thin film nanocatalysts on structured supports: from CO2 capture to wastewater treatment

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The urgent need for sustainable solutions to environmental challenges has led to significant research efforts towards innovative processes and technologies capable of addressing global issues such as carbon dioxide (CO2) capture and valorisation as well as efficient water-reuse cycles. The majority of processes involved in CO2 conversion require highly active catalysts for practical implementation. Concurrently, wastewater treatment technologies, critical for achieving sustainable water reuse, often rely on complex multi-stage systems that incorporate advanced oxidation processes (AOPs). Optimising reaction conditions and exploring unconventional approaches to catalytic system design are crucial for enhancing the efficiency of these processes. Among the emerging solutions, the application of thin-film catalysts deposited by cold plasma onto various structured supports has shown promising potential for improving process performance to meet environmental goals. This paper discusses recent advancements in the development of thin-film nanocatalysts based on cost-effective transition metals. It highlights their application in gas-phase reactions, such as CO2 hydrogenation to value-added products, as well as innovative uses in multiphase gas-liquid systems, including CO2 capture in aqueous solvents and the ozonation of wastewater.
Rocznik
Strony
489--504
Opis fizyczny
Bibliogr. 68 poz., rys., tab., wykr.
Twórcy
  • Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005 Łódź, Poland, phone +48 42 631 37 00
  • Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005 Łódź, Poland, phone +48 42 631 37 00
  • Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005 Łódź, Poland, phone +48 42 631 37 00
Bibliografia
  • [1] Whang HS, Lim J, Choi MS, Lee J, Lee H. Heterogeneous catalysts for catalytic CO2 conversion into value-added chemicals. BMC Chem Eng. 2019;1(1):9. DOI: 10.1186/s42480-019-0007-7.
  • [2] Mirzakhani S, Yin BH, Masteri‐Farahani M, Yip ACK. Heterogeneous catalytic systems for carbon dioxide hydrogenation to value‐added chemicals. ChemPlusChem. 2023;88(7):e202300157. DOI: 10.1002/cplu.202300157.
  • [3] Yusuf N, Almomani F, Qiblawey H. Catalytic CO2 conversion to C1 value-added products: Review on latest catalytic and process developments. Fuel. 2023;345:128178. DOI: 10.1016/j.fuel.2023.128178.
  • [4] Muhammad Farhan S, Pan W, Zhijian C, Jian Jun Y. Innovative catalysts for the selective catalytic reduction of NOx with H2: A systematic review. Fuel. 2024;355:129364. DOI: 10.1016/j.fuel.2023.129364.
  • [5] Liu K, Zhang T. Single-atom catalysts for nitrogen oxide emission control. Curr Opin Chem Eng. 2023;41:100948. DOI: 10.1016/j.coche.2023.100948.
  • [6] Elkaee S, Kim SY, Phule AD, Zaman MWU, Gyu Lee S, Park G, et al. Catalysts for fast and NO2 SCR reactions for the removal of nitrogen oxides emitted from various sources: Recent advances, mechanisms, and future directions. J Environ Chem Eng. 2023;11(6):111131. DOI: 10.1016/j.jece.2023.111131.
  • [7] Guo Y, Wen M, Li G, An T. Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review. Appl Catal B Environ. 2021;281:119447. DOI: 10.1016/j.apcatb.2020.119447.
  • [8] Wang Q, Yeung KL, Bañares MA. Ceria and its related materials for VOC catalytic combustion: A review. Catal Today. 2020;356:141-54. DOI: 10.1016/j.cattod.2019.05.016.
  • [9] Gao W, Tang X, Yi H, Jiang S, Yu Q, Xie X, et al. Mesoporous molecular sieve-based materials for catalytic oxidation of VOC: A review. J Environ Sci. 2023;125:112-34. DOI: 10.1016/j.jes.2021.11.014.
  • [10] Jin X, Wu C, Fu L, Tian X, Wang P, Zhou Y, et al. Development, dilemma and potential strategies for the application of nanocatalysts in wastewater catalytic ozonation: A review. J Environ Sci. 2023;124:330-49. DOI: 10.1016/j.jes.2021.09.041.
  • [11] Mbarek WB, Escoda L, Saurina J, Pineda E, Alminderej FM, Khitouni M, et al. Nanomaterials as a sustainable choice for treating wastewater: A review. Materials. 2022;15(23):8576. DOI: 10.3390/ma15238576.
  • [12] Tai VC, Che HX, Kong XY, Ho KC, Ng WM. Decoding iron oxide nanoparticles from design and development to real world application in water remediation. J Ind Eng Chem. 2023;127:82-100. DOI: 10.1016/j.jiec.2023.07.038.
  • [13] Patil RP, Kalantre VA, Alasundkar KN. Recent trends of nanocatalyst for organic transformations via sustainable environmental benign route. Res Chem Intermed. 2023;49(12):5163-203. DOI: 10.1007/s11164-023-05119-y.
  • [14] Chadha U, Selvaraj SK, Ashokan H, Hariharan SP, Mathew Paul V, Venkatarangan V, et al. Complex nanomaterials in catalysis for chemically significant applications: from synthesis and hydrocarbon processing to renewable energy applications. Adv Mater Sci Eng. 2022:1-72. DOI: 10.1155/2022/1552334.
  • [15] Wacławek S, Padil VVT, Černík M. Major advances and challenges in heterogeneous catalysis for environmental applications: A review. Ecol Chem Eng S. 2018;25(1):9-34. DOI: 10.1515/eces-2018-0001
  • [16] Cao S, Tao F (Feng), Tang Y, Li Y, Yu J. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem Soc Rev. 2016;45(17):4747-65. DOI: 10.1039/C6CS00094K.
  • [17] Baig N, Kammakakam I, Falath W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv. 2021;2(6):1821-71. DOI: 10.1039/D0MA00807A.
  • [18] Beena Sreekumar M, Annadurai N, Jayaram S, Sarojini S. Industrial applications of hybrid nanocatalysts and their green synthesis. Top Catal. 2022;65(19-20):1910-22. DOI: 10.1007/s11244-022-01712-4.
  • [19] Wacławek S, Fijalkowski M, Bardos P, Kočí J, Scholz S, Hirsch P, et al. How can hybrid materials enable a circular economy? Ecol Chem Eng S. 2022;29(4):447-62. DOI: 10.2478/eces-2022-0030.
  • [20] Argyle M, Bartholomew C. Heterogeneous catalyst deactivation and degeneration: A review. Catalysts. 2015;5(1):145-269. DOI: 10.3390/catal5010145.
  • [21] Wang Z, Zhang Y, Neyts EC, Cao X, Zhang X, Jang BWL, et al. Catalyst preparation with plasmas: How does it work? ACS Catal. 2018;8(3):2093-110. DOI: 10.1021/acscatal.7b03723.
  • [22] Liu C, Li M, Wang J, Zhou X, Guo Q, Yan J, et al. Plasma methods for preparing green catalysts: Current status and perspective. Chin J Catal. 2016;37(3):340-8. DOI: 10.1016/S1872-2067(15)61020-8.
  • [23] Ye Z, Zhao L, Nikiforov A, Giraudon JM, Chen Y, Wang J, et al. A review of the advances in catalyst modification using nonthermal plasma: Process, mechanism and applications. Adv Colloid Interface Sci. 2022;308:102755. DOI: 10.1016/j.cis.2022.102755.
  • [24] Tyczkowski J. Cold Plasma Produced Catalytic Materials. In: Plasma Science and Technology - Progress in Physical States and Chemical Reactions. InTech; 2016. DOI: 10.5772/61832.
  • [25] Jozwiak L, Balcerzak J, Kubiczek A, Tyczkowski J. Plasma deposited thin-film sandwich-like bifunctional electrocatalyst for oxygen reduction and evolution reactions. Thin Solid Films. 2018;660:161-5. DOI: 10.1016/j.tsf.2018.06.002.
  • [26] Carraro G, Maccato C, Gasparotto A, Kaunisto K, Sada C, Barreca D. Plasma‐assisted fabrication of Fe2O3-Co3O4 nanomaterials as anodes for photoelectrochemical water splitting. Plasma Processes Polymers. 2016;13(1):191-200. DOI: 10.1002/ppap.201500106.
  • [27] Bogaerts A, Tu X, Whitehead JC, Centi G, Lefferts L, Guaitella O, et al. The 2020 plasma catalysis roadmap. J Phys Appl Phys. 2020;53(44):443001. DOI: 10.1088/1361-6463/ab9048.
  • [28] Kim HH, Teramoto Y, Ogata A, Takagi H, Nanba T. Plasma catalysis for environmental treatment and energy applications. Plasma Chem Plasma Process. 2016;36(1):45-72. DOI: 10.1007/s11090-015-9652-7.
  • [29] Chang T, Wang Y, Wang Y, Zhao Z, Shen Z, Huang Y, et al. A critical review on plasma-catalytic removal of VOCs: Catalyst development, process parameters and synergetic reaction mechanism. Sci Total Environ. 2022;828:154290. DOI: 10.1016/j.scitotenv.2022.154290.
  • [30] Liu Y, Wang JW, Zhang J, Qi TT, Chu GW, Zou HK, et al. NOx removal by non-thermal plasma reduction: experimental and theoretical investigations. Front Chem Sci Eng. 2022;16(10):1476-84. DOI: 10.1007/s11705-022-2165-z.
  • [31] Jun H, Kim H, Sakaguchi Y, Hong Y. Reduction of NOx and SO2 in a non-thermal plasma reactor combined with catalyst and methanol. J Phys Appl Phys. 2008;41(20):205213. DOI: 10.1088/0022-3727/41/20/205213.
  • [32] Wang J, AlQahtani MS, Wang X, Knecht SD, Bilen SG, Song C, et al. One-step plasma-enabled catalytic carbon dioxide hydrogenation to higher hydrocarbons: significance of catalyst-bed configuration. Green Chem. 2021;23(4):1642-7. DOI: 10.1039/D0GC03779F.
  • [33] Ray D, Ye P, Yu JC, Song C. Recent progress in plasma-catalytic conversion of CO2 to chemicals and fuels. Catal Today. 2023;423:113973. DOI: 10.1016/j.cattod.2022.12.004.
  • [34] Guo H, Su Y, Yang X, Wang Y, Li Z, Wu Y, et al. Dielectric barrier discharge plasma coupled with catalysis for organic wastewater treatment: A review. Catalysts. 2022;13(1):10. DOI: 10.3390/catal13010010.
  • [35] Jiang B, Zheng J, Qiu S, Wu M, Zhang Q, Yan Z, et al. Review on electrical discharge plasma technology for wastewater remediation. Chem Eng J. 2014;236:348-68. DOI: 10.1016/j.cej.2013.09.090.
  • [36] Locke BR, Sato M, Sunka P, Hoffmann MR, Chang JS. Electrohydraulic discharge and nonthermal plasma for water treatment. Ind Eng Chem Res. 2006;45(3):882-905. DOI: 10.1021/ie050981u.
  • [37] Tyczkowski J. Cold Plasma - A promising tool for the development of electrochemical cells. In: Shao Y, editor. Electrochemical Cells - New Advances in Fundamental Researches and Applications. InTech; 2012. DOI: 10.5772/33974.
  • [38] Santos AM, Catapan RC, Duarte DA. The potential of non-thermal plasmas in the preparation of supported metal catalysts for fuel conversion in automotive systems: A literature overview. Front Mech Eng. 2020;6:42. DOI: 10.3389/fmech.2020.00042.
  • [39] Tyczkowski J, Kierzkowska-Pawlak H, Kapica R. Method of producing a thin layer of catalyst on structured packing of reactors for CO2 methanation. Lodz University of Technology, Poland, 2022.09.12, patent PL429641 (A1).
  • [40] Tyczkowski J, Kapica R, Łojewska J, Kołodziej A. Method for obtaining a thin layer of catalyst material on substrates made of electrically conductive material. Lodz University of Technology, Poland, 2014.07.31, patent PL217586 (B1).
  • [41] Landi G. Novel structured catalytic reactors. Catalysts. 2021;11(12):1472. DOI: 10.3390/catal11121472.
  • [42] Moulijn JA, Kreutzer MT, Nijhuis TA, Kapteijn F. Monolithic catalysts and reactors. In: Advances in Catalysis. Vol 54. Elsevier; 2011:249-327. DOI: 10.1016/B978-0-12-387772-7.00005-8.
  • [43] Kapteijn F, Moulijn JA. Structured catalysts and reactors - Perspectives for demanding applications. Catal Today. 2022;383:5-14. DOI: 10.1016/j.cattod.2020.09.026.
  • [44] Mehla S, Das J, Jampaiah D, Periasamy S, Nafady A, Bhargava SK. Recent advances in preparation methods for catalytic thin films and coatings. Catal Sci Technol. 2019;9(14):3582-602. DOI: 10.1039/C9CY00518H.
  • [45] Kierzkowska-Pawlak H, Ryba M, Fronczak M, Kapica R, Sielski J, Sitarz M, et al. Enhancing CO2 conversion to CO over plasma-deposited composites based on mixed Co and Fe oxides. Catalysts. 2021;11(8):883. DOI: 10.3390/catal11080883.
  • [46] Tyczkowski J, Kierzkowska-Pawlak H, Kapica R, Balcerzak J, Sielski J. Cold plasma − A promising tool for the production of thin-film nanocatalysts. Catal Today. 2019;337:44-54. DOI: 10.1016/j.cattod.2019.03.037.
  • [47] Tyczkowski J, Kapica R, Kozanecki M, Kierzkowska-Pawlak H, Sielski J, Aoki T, et al. Tailoring the nanostructure of plasma-deposited CoOX-based thin films for catalytic applications - A step forward in designing nanocatalysts. Mater Des. 2022;222:111095. DOI: 10.1016/j.matdes.2022.111095.
  • [48] Kierzkowska-Pawlak H, Kruszczak E, Tyczkowski J. Catalytic activity of plasma-deposited Co3O4-based thin films for CO2 hydration - A new approach to carbon capture applications. Appl Catal B Environ. 2022;304:120961. DOI: 10.1016/j.apcatb.2021.120961.
  • [49] Bilińska L, Gmurek M, Kierzkowska-Pawlak H, Kruszczak E, Tyczkowski J. Bubble column for catalytic ozonation with heterogeneous thin-film catalyst. Lodz University of Technology, Poland, 2023.06.27, patent claim P.445362.
  • [50] Smolarek M, Kierzkowska-Pawlak H, Kapica R, Fronczak M, Sitarz M, Leśniak M, et al. Cold plasma synthesis and testing of NiOX-based thin-film catalysts for CO2 methanation. Catalysts. 2021;11(8):905. DOI: 10.3390/catal11080905.
  • [51] Panek B, Kierzkowska-Pawlak H, Uznański P, Nagy S, Nagy-Trembošová V, Tyczkowski J. The role of carbon nanotube deposit in catalytic activity of FeOX-based PECVD thin films tested in RWGS reaction. Catalysts. 2023;13(9):1302. DOI: 10.3390/catal13091302.
  • [52] Singh BK, Lee S, Na K. An overview on metal-related catalysts: metal oxides, nanoporous metals and supported metal nanoparticles on metal organic frameworks and zeolites. Rare Met. 2020;39(7):751-66. DOI: 10.1007/s12598-019-01205-6.
  • [53] Munnik P, de Jongh PE, de Jong KP. Recent developments in the synthesis of supported catalysts. Chem Rev. 2015;115(14):6687-718. DOI: 10.1021/cr500486u.
  • [54] Gao X, Wang Z, Huang Q, Jiang M, Askari S, Dewangan N, et al. State-of-art modifications of heterogeneous catalysts for CO2 methanation - Active sites, surface basicity and oxygen defects. Catal Today. 2022;402:88-103. DOI: 10.1016/j.cattod.2022.03.017.
  • [55] Ashok J, Pati S, Hongmanorom P, Tianxi Z, Junmei C, Kawi S. A review of recent catalyst advances in CO2 methanation processes. Catal Today. 2020;356:471-89. DOI: 10.1016/j.cattod.2020.07.023.
  • [56] González-Castaño M, Dorneanu B, Arellano-García H. The reverse water gas shift reaction: a process systems engineering perspective. React Chem Eng. 2021;6(6):954-76. DOI: 10.1039/D0RE00478B.
  • [57] Sharma T, Sharma S, Kamyab H, Kumar A. Energizing the CO2 utilization by chemo-enzymatic approaches and potentiality of carbonic anhydrases: A review. J Clean Prod. 2020;247:119138. DOI: 10.1016/j.jclepro.2019.119138.
  • [58] Jing G, Meng X, Sun W, Kowalczuk PB, Gao Z. Recent advances in the treatment and recycling of mineral processing wastewater. Environ Sci Water Res Technol. 2023;9(5):1290-304. DOI: 10.1039/D2EW00944G.
  • [59] Vuppaladadiyam AK, Merayo N, Prinsen P, Luque R, Blanco A, Zhao M. A review on greywater reuse: quality, risks, barriers and global scenarios. Rev Environ Sci Biotechnol. 2019;18(1):77-99. DOI: 10.1007/s11157-018-9487-9.
  • [60] Deng Y, Zhao R. Advanced oxidation processes (AOPs) in wastewater treatment. Curr Pollut Rep. 2015;1(3):167-76. DOI: 10.1007/s40726-015-0015-z.
  • [61] Pandis PK, Kalogirou C, Kanellou E, Vaitsis C, Savvidou MG, Sourkouni G, et al. Key points of advanced oxidation processes (AOPs) for wastewater, organic pollutants and pharmaceutical waste treatment: A mini review. ChemEng. 2022;6(1):8. DOI: 10.3390/chemengineering6010008.
  • [62] Wacławek S. Do we still need a laboratory to study advanced oxidation processes? A review of the modelling of radical reactions used for water treatment. Ecol Chem Eng S. 2021;28(1):11-28. DOI: 10.2478/eces-2021-0002.
  • [63] Bilińska L, Blus K, Bilińska M, Gmurek M. Industrial textile wastewater ozone treatment: Catalyst selection. Catalysts. 2020;10(6):611. DOI: 10.3390/catal10060611.
  • [64] Gmurek M, Alexander J, Mazierski P, Miodyńska M, Fronczak M, Klimczuk T, et al. Enhancement of photocatalytic-based processes by mono- and bimetallic (CuPd) rutile loaded nanoparticles for antibiotic resistance genes and facultative pathogenic bacteria removal. Chem Eng J. 2023;462:142243. DOI: 10.1016/j.cej.2023.142243.
  • [65] Chokshi NP, Ruparelia JP. Catalytic ozonation of reactive black 5 over silver-cobalt composite oxide catalyst. J Inst Eng India Ser A. 2020;101(3):433-43. DOI: 10.1007/s40030-020-00454-4.
  • [66] Avramescu SM, Fierascu I, Fierascu RC, Brazdis RI, Nica AV, Butean C, et al. Removal of paracetamol from aqueous solutions by photocatalytic ozonation over TiO2-MexOy thin films. Nanomaterials. 2022;12(4):613. DOI: 10.3390/nano12040613.
  • [67] Priyadarshini M, Ahmad A, Ghangrekar MM. Efficacious degradation of ethylene glycol in baffled ozonation reactor in the presence of waste-derived MIL-53(Al/Fe)-metal-organic framework derived Al2O3/Fe3O4. J Environ Chem Eng. 2023;11(5):110754. DOI: 10.1016/j.jece.2023.110754.
  • [68] Beltrán FJ. Ozone Reaction Kinetics for Water and Wastewater Systems. CRC Press; 2003. ISBN: 9781566706292. DOI: 10.1201/9780203509173.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-044dfe12-60ac-4847-816b-61eaadc84161
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.