PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Modeling Radiocesium Contamination of Sunflower Products in the Zaporizhzhia Region

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The accident at the Chornobyl nuclear power plant was one of the most serious nuclear incidents in human history. A radioactive plume covered a whole strip of northeastern Europe. The consequences of this catastrophe are still being felt, both in Ukraine and around the world. The article is devoted to the assessment of the consequences of radiocesium contamination of agricultural lands and irrigated waters during a possible accident at the Zaporizhzhia NPP and the associated Cs137 contamination of sunflower products in the Zaporizhzhia region. The studies were carried out using a dynamic mathematical model for the formation of radionuclide activity in the "water-soil-plant-product" system, ECOSIS-87 (Ecoplant). The article presents the results of studies of possible contamination of the environment by radiocesium according the Chornobyl NPP-86 scenario and sunflower production by the method of mathematical dynamic modeling. The calculations were carried out on the basis of the results of an agrochemical and agroecological survey of the state of soils in Ukraine and the Dnipro cascade of reservoirs. If an explosion occurs at the Zaporizhzhia NPP, the power of which will be equal to the Chornobyl NPP, then 100,000 hectares of agricultural land in the region will be taken out of the agricultural production of the Zaporizhzhia region. On agricultural lands where soil contamination with radiocaesium will be more than 5 Ci/km2, and the concentration in irrigated waters will reach 2 Bq/dm3, sunflower, which was grown for seeds to produce oil will need to be replaced with an industrial crop, which will also lead to loss of seed yield sunflower. Crop losses will lead to a decrease in the volume of sunflower oil. It should also be taken into account that the purification of soil and water does not occur in one year. At least in 5 years the situation will begin to improve.
Słowa kluczowe
Rocznik
Strony
279--287
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Odesa State Environment University, 15 Lvivska Street, Odesa, 65016, Ukraine
  • National Scientific Center "V.Ye. Tairov Institute of Viticulture and Winemaking", 27 the 40th anniversary of Victory Street, 65496, village Tairove, Odesa region, 65496, Ukraine
  • Odesa State Environment University, 15 Lvivska Street, Odesa, 65016, Ukraine
  • Odesa State Environment University, 15 Lvivska Street, Odesa, 65016, Ukraine
  • State Enterprise "Experimental Farm "Andriivske" Institute of Water Problems and Land Reclamation of the National Academy of Agrarian Sciences of Ukraine", 58 Central Street, village Andriivka, Bilgorod-Dnistrovsky district, Odesa region, 67742, Ukraine
  • Odesa State Environment University, 15 Lvivska Street, Odesa, 65016, Ukraine
  • Odesa State Environment University, 15 Lvivska Street, Odesa, 65016, Ukraine
  • Odesa State Environment University, 15 Lvivska Street, Odesa, 65016, Ukraine
  • Odesa State Environment University, 15 Lvivska Street, Odesa, 65016, Ukraine
  • Odesa State Environment University, 15 Lvivska Street, Odesa, 65016, Ukraine
Bibliografia
  • 1. Begy RC, Simon H, Vasilache D, Kelemen S, Cosma C. 2017.137Cs contamination over Transylvania region (Romania) after Chernobyl Nuclear Power Plant Accident. Sci Total Environ, 599-600, 627-636. https://doi: 10.1016/j.scitotenv.2017.05.019.
  • 2. Evangeliou N, Hamburger T, Talerko N, Zibtsev S, Bondar Y, Stohl A, Balkanski Y, Mousseau TA, Møller AP. 2016. Reconstructing the Chernobyl Nuclear Power Plant (CNPP) accident 30 years after. A unique database of air concentration and deposition measurements over Europe. Environ Pollut. Sep, 216, 408-418. https://doi: 10.1016/j.envpol.2016.05.030.
  • 3. Hachinohe M., Kimura K., Kubo Y., Tanji K., Hamamatsu S., Hagiwara S., Nei D., Kameya H., Nakagawa R., Matsukura U., Todoriki S., Kawamoto S. 2013. Distribution of Radioactive Cesium (134Cs Plus 137Cs) in a Contaminated Japanese Soybean Cultivar during the Preparation of Tofu, Natto, and Nimame (Boiled Soybean). J Food Prot, 76(6), 1021–1026. https://doi.org/10.4315/0362-028X.JFP-12-441.
  • 4. Konoplev A., Kanivets V., Zhukova O., Germenchuk M., Derkach H. 2021. Mid- to long radiocesium wash-off from contaminated catchments at Chernobyl and Fukushima. Water Research, 188. https://doi.org/10.1016/j.watres.2020.116514
  • 5. Kovalev V., Derebon I., Klymenko T., Fedorchuk S., Trembitska O., Lisovyy M. 2020. Production of textile crops in conditions of radioactive contamination. Agroecological journal, 3, 73-79. https://doi.org/10.33730/2077-4893.3.2020.211529
  • 6. Mirzoeva N., Tereshchenko N., Korotkov A. 2022. Artificial Radionuclides in the System: Water, Irrigated Soils, and Agricultural Plants of the Crimea Region. Land, 11(9), 1539. https:// doi.org/10.3390/land11091539.
  • 7. Noor M.J., Ashraf M.A. 2017. Accumulation and Tolerance of Radiocesium in Plants and its Impact on the Environment. Environment & Ecosystem science, 1(1), 13-16. http://dx.doi.org/10.26480/ees.01.2017.13.17 .
  • 8. Oshita S, Kawagoe Y, Yasunaga E, Takata D, Nakanishi TM, Tanoi K, Makino Y, Sasaki H. 2011. Radioactivity measurement of soil and vegetables contaminated from low level radioactive fall out arised from Fukushima Daiichi Nuclear accident: A study on Institute for Sustainable Agro-Ecosystem Services, Graduate School of Agricultural and Life Sciences, The University of Tokyo. Radioisotopes, 60, 329–333.
  • 9. Panov A.V, Isamov N.N., Tsygvintsev P.N., Geshel I.V., E.V. 2022. Comprehensive radioecological monitoring of terrestrial ecosystems in the vicinity of the Rooppur nuclear power plant (People’s Republic of Bangladesh). Environmental Nanotechnology, Monitoring & Management, 17. https://doi.org/10.1016/j.enmm.2021.100623.
  • 10. Polevoy A.N. 1993. Modeling the process of formation of the productivity of grain crops under conditions of radioactive contamination of agroecosystems. Meteorology and hydrology, 3, 97-105.
  • 11. Prister B. S., Vinogradskaya V. D. 2011. Kinetic model of 137Cs behavior in the “soil-plant” system, taking into account the agrochemical properties of the soil. Safety problems of nuclear power plants and Chornobyl, 16, 151-161.
  • 12. Romanchuk, L. D., Fedonuk, T. P., & Khant, G. O. 2017. Radiomonitoring of plant products and soils of Polissia during the long-term period after the disaster at the Chornobyl Nuclear Power Plant. Regulatory Mechanisms in Biosystems, 8(3), 444-454. https://doi.org/10.15421/021769
  • 13. Sasaki H, Shirato S, Tahara T, Sato K, Takenaka H. 2013. Accumulation of radioactive cesium released from Fukushima Daiichi Nuclear Power Plant in terrestrial cyanobacteria Nostoc commune. Microbes Environ, 28(4), 466-469. https://doi: 10.1264/jsme2.me13035
  • 14. Shinano T. 2020. Mitigation of radioactive caesium transfer from soil to plant. In Strategies and Practices in the Remediation of Radioactive Contamination in Agriculture. In book: Strategies and Practices in the Remediation of Radioactive Contamination in Agriculture, Proceeding Series of IAEA, 67-70.
  • 15. Shinano T., Matsunami H., Kubo K. 2018. Decontamination of agricultural fields and mitigation of radioactive cesium uptake after nuclear contamination by TEPCO’s FDNPP accident - situation after 7 years. Global symposium on soil pollution. FAO HQ. |Rome, Italy, 958-963.
  • 16. Soudek P, Valenová Š, Vavŕíková Z, Vaněk T. 2006. 137Cs and 90Sr uptake by sunflower cultivated under hydroponic conditions. J Environ Radioact, 88, 236-250.
  • 17. Steinhauser G, Brandl A, Johnson TE. 2014. Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Science of The Total Environment, 470-471, 800-817. https://doi.org/10.1016/j.scitotenv.2013.10.029
  • 18. Tagami K., Uchida S. 2020. Major factors affecting weathering half-lives of iodine-131 and radiocaesium in leafy vegetables directly contaminated by Fukushima Daiichi Nuclear Power Plant accident fallout (2) Comparison of the weathering half-lives observed for herbaceous plants after the Chernobyl and the Fukushima nuclear accidents. Radioisotopes, 69, 353-364. https:/doi: 10.3769/radioisotopes.69.353.
  • 19. Tagami K., Shigeo Uchida S. 2021. Mass Interception Fractions and Weathering Half-lives of Iodine-131 and Radiocesium in Leafy Vegetables Observed after the Fukushima Daiichi Nuclear Power Plant Accident. Journal of Radiation Protection and Research, 46(4), 178–183. https://doi.org/10.14407/jrpr.2021.00164.
  • 20. Tanoi K, Hashimoto K, Sakurai K, Nihei N, Ono Y, Nakanishi TM. 2011. An Imaging of radioactivity and determination of Cs-134 and Cs-137 in wheat tissue grown in Fukushima. Radioisotopes, 60, 317-322.
  • 21. Voitsekhovych O.V., Kanivets V.V. Kireev S.I., Laptev G.V., Obrizan S.M. 2016. State of radioactive contamination of surface waters. 30 Years of the Chornobyl disaster (reviews). A collection of informational and analytical reports. Kyiv: KIM, 129-139.
  • 22. Zhygailo O.L. 2007. Method for agroecological assessment of radioactive contamination of primary biological products. Ukrainian Hydrometeorological Journal, 2, 16-23.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-044bb3ed-8a74-40c5-adb1-cc1a9cdb7055
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.