PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aerozole pochodzenia bakteryjnego w pomieszczeniach roboczych zakładu gospodarki odpadami

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Aerosols of Bacterial Origin in Working Rooms of Waste Management Facility
Języki publikacji
PL
Abstrakty
EN
The aim of the research was to identify aerosols of bacterial origin, including aerobic and anaerobic bacteria, peptidoglycans and endotoxins in working rooms of waste management facility, which included sorting and composting of municipal waste. Four sampling points were located in the plant: in the pre-sorting cab, in sorting hall at conveyor belts, in the composting bunkers hall, as well as in the front of entrance gate, as a sample of external background. Air samples for the presence of bacteria were collected using a 6-stage Andersen impactor, wherein two types of microbial media were loaded: TSA agar with defibrinated sheep blood for aerobic bacteria and Schaedler's agar for anaerobic bacteria. Air samples for the presence of endotoxins and peptidoglycans were carried out using 8-stage cascade impactor, wherein the glass fiber filters were provided. Biochemical API tests were used for a detailed identification of bacteria. Determination of peptidoglycans was carried out using the SLP test (Silkworm Larvae Plasma) and endotoxin - LAL assay (Limulus Amebocyte Lysate). The results of the quantitative analysis of bioaerosols at the three tested working rooms showed the following geometric mean (GM) concentrations: aerobic bacteria – 4348 cfu/m3 (geometric standard deviation, GSD = 1.14); anaerobic bacteria – 19914 cfu/m3 (GSD = 3.65); endotoxins – 173.6 ng/m3. (GSD = 2.39); peptidoglycans – 1446.6 ng/m3 (GSD = 1.21). Comparative analysis revealed statistically significant differences (p < 0.01) between the concentrations of aerobic bacteria in the working rooms and the external background – 551 cfu/m3. Anaerobic bacteria were the dominant group and accounted for 82% of all identified microorganisms. A total of 22 species of bacteria, belonging to 13 genera was identified in waste management facility. The greatest taxonomic diversity was observed in the sorting area (21 species), composting – 15, while in the background samples – 13 species. Among the identified species, six (Actinomyces israelii, A. meyeri, A. naeslundii, Clostridium perfrin-gens, Proteus vulgaris, and Streptomyces spp. can be treated as potentially harmful to waste workers, as they were classified into the second risk group by the ordinance of Minister of Health from 2005. Analysis of size distributions of bacteria showed that they occurred mostly in the form of single cells with an aerodynamic diameter in the range of 1.1-2.1 µm, and in the range of 4.7-7.0 µm, where the process of aggregation of bacterial cells with organic dust particles takes place. In the case of endotoxins and peptidoglycans we found a gradual increase in the concentrations of particles with aerodynamic diameters in the range of 3.3-11.0 µm. On the basis of the study it can be stated that the working rooms in waste management facility were heavily contaminated with aerosols of bacterial origin. Examination provided the pioneer results for anaerobic bacteria, which were the dominant group. Bacteria that can pose a health risk to exposed workers were also found in the air. The analysis of particle size distribution suggests that the bioaerosols observed in these rooms can accumulate in the middle and upper respiratory tract of employees, causing irritation of the nose and throat.
Rocznik
Strony
294--308
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
  • Centralny Instytut Ochrony Pracy – Państwowy Instytut Badawczy
autor
  • Centralny Instytut Ochrony Pracy – Państwowy Instytut Badawczy
autor
  • Centralny Instytut Ochrony Pracy – Państwowy Instytut Badawczy
  • Centralny Instytut Ochrony Pracy – Państwowy Instytut Badawczy
  • Centralny Instytut Ochrony Pracy – Państwowy Instytut Badawczy
Bibliografia
  • 1. Bujaowicz-Haraś, B., Janulewicz, P., Nowak, A., Krukowski, A. (2015). Evaluation of Sustainable Development in the Member States of hte European Union. Problemy Ekorozwoju/Problems of Sustainable Development, 10/2, 71-78.
  • 2. Czaja, P. (2014) Czarna Afryka, czarny węgiel i złote paliwo. O zgazowaniu węgla w koncernie Sasol słów kilka. Przegląd Górniczy 11. Katowice.
  • 3. Czaja, P. (2014). Energia z węgla pozyskana na drodze zgazowania. Chemik, 12. Jarzyna, W, Pawłowski, A., Viktarovich, N. (2014). Technical development of wind energy and compliance with the requirements for sustainable development. Problemy Ekorozwoju/Problems of Sustainable Development, 9(1), 167-177
  • 4. Kasztelewicz, Z., Tajduś, A., Słomka, T. (2016) Węgiel brunatny to paliwo przyszłości czy przeszłości. Monografia IX Międzynarodowy Kongres Górnictwo Węgla Brunatnego. Kraków: Agencja Wydawniczo-Poligraficzna Art-Tekst.
  • 5. Kwaśniewski, K.; Kopacz, M., Grzesiak, P., Kapłon, R., Sobczyk, E. J. (2015) Zgazowanie węgla. Uwarunkowania, efektywność i perspektywy rozwoju. Kraków: Wydawnictwa AGH.MG. (2009). Prognoza zapotrzebowania na paliwa i energię do 2030 roku. Warszawa: Ministerstwo Gospodarki.
  • 6. Pawłowski, A. (2009a). Sustainable energy as a sine qua non condition for the achievement of sustainable development. Problemy Ekorozwoju/Problems of Sustainable Development, 4/2, 9-12.
  • 7. Pawłowski, A. (2009b). Theoretical Aspects of Sustainable Development Concept. Rocznik Ochrona Środowiska, 11(2), 985-994.
  • 8. Pawłowski, A. (2013). Sustainable Development and Globalization. Problemy Ekorozwoju/Problems of Sustainable Development, 8/2, 5-16.
  • 9. Rydzewski, P. (2016). Changes in Environmental Attitudes in Selected Countries of Central and Eastern Europe. Problemy Ekorozwoju/Problems of Sustainable Development, 11(1), 65-72.
  • 10. Strona internetowa: http://www.rynek-energii-elektrycznej.cire.pl
  • 11. Sztumski, W. (2016). The Impact of Sustainable Development on the Homeostasis of the Social Environment and the Matter of Survival. Problemy Ekorozwoju/Problems of Sustainable Development,11(1), 41-47.
  • 12. Tajduś, A., Kaczorowski, J., Kasztelewicz, Z., Czaja, P., Cała, M., Bryja, Z., Żuk, S. (2014) Węgiel Brunatny – oferta dla polskiej energetyki. Możliwości rozwoju działalności górnictwa węgla brunatnego w Polsce do roku 2050. Monografia. Kraków: Agencja Wydawnioczo-Poligraficzna Art-Tekst.
  • 13. Żelazna, A., Gołębiowska, J. (2015). The Measures of Sustainable Development – a Study Based on the European Monitoring of Energy-related Indicators
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-044b9c86-7171-4e03-9b4e-0dbb4ca037be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.