PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of curing temperature in the alkali-activated blast-furnace slag paste and their structural influence of porosity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to the environmental problem posed by the use of Portland cement as construction material, it becomes necessary the search for supplementary cementitious materials that mitigate the ecological damage caused by it. Because the chemical similarity and the high cementitious powers of the blast furnace slag, it is used in the generation of geopolymers in a cement total replacement. This research focused on the study of the influence of the curing conditions on the final properties of blast furnace slag establishing three variables: no cured process (N-C), cured of controlled temperature of 45°C (CT45-C) and room temperature cure (RT-C); evaluating the mechanical behavior until 28 days of age and the water porosity index. The results show that geopolymers based on blast furnace slag has a behavior similar to hydration maturity of Portland cement and curing process decreases the porosity; On the other hand, applying a controlled temperature generates densest resistant pastes such as the variable CT45-C which reach the highest value of resistance in all curing ages.
Twórcy
  • Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Los Mochis, Sinaloa, Mexico
  • Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Los Mochis, Sinaloa, Mexico
  • Departamento de Construcciones Arquitectónicas II, Universidad Politécnica de Cataluña, EPSEB, Barcelona, Spain
  • Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Los Mochis, Sinaloa, Mexico
  • carlos.arc@uas.edu.mx
  • Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Los Mochis, Sinaloa, Mexico
Bibliografia
  • 1. Rashad A.M., A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash. Mater. Des. 53, 2014, 1005–1025. DOI: 10.1016/j.matdes.2013.07.074.
  • 2. Siddique R., Khan M.I., Supplementary Cementing Materials. Springer, 2011. DOI: 10.1017/ CBO9781107415324.004.
  • 3. Flower D.J.M., Sanjayan J.G., Green house gas emissions due to concrete manufacture. Int. J. Life Cycle Assess. 12, 2007, 282–288. DOI: 10.1007/ s11367-007-0327-3.
  • 4. Vera Martínez P.S., Análisis de las exportaciones mexicanas de cemento, 2001-2014. In: XX Congres Int. Contaduría, Adm. E Informática, Mexico, 2015.
  • 5. Ben Haha, M. Le Saout G., Winnefeld F., Lothenbach B., Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem. Concr. Res. 41, 2011, 301–310. DOI: 10.1016/j.cemconres.2010.11.016.
  • 6. Gebregziabiher B.S., Thomas R., Peethamparan S. , Very early-age reaction kinetics and microstructural development in alkali-activated slag, Cem. Concr. Compos. 55, 2015, 91–102. DOI: 10.1016/j.cemconcomp.2014.09.001.
  • 7. Espinoza L., Escalante I., Comparación de las propiedades del concreto utilizando escoria de alto horno como reemplazo parcial y total del cemento Pórtland ordinario, Nexo Rev. Científica. 21, 2008, 11–18.
  • 8. Myers R.J., Lothenbach B., Bernal S.S., Provis J.L., Thermodynamic modelling of alkali-activated slag cements. Appl. Geochemistry. 61, 2015, 233– 247. DOI: 10.1016/j.apgeochem.2015.06.006.
  • 9. Puertas F., Cementos de escorias activadas alcalinamente: Situación actual y perspectivas de futuro. Mater. Construcción. 45, 1995, 53–64. DOI: 10.3989/mc.1995.v45.i239.553.
  • 10. Wang S.D., Scrivener K.L., Hydration products of alkali activated slag cement, Cem. Concr. Res. 25, 1995, 561–571. DOI: 10.1016/0008- 8846(95)00045-E.
  • 11. Zhang Y.J., Zhao Y.L., Li H.H., Xu D.L., Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag, J. Mater. Sci. 43, 2008, 7141–7147. DOI: 10.1007/s10853-008-3028-9.
  • 12. Marjanovic N., Komljenovic M., Bascarevic Z., Nikolic V., Petrovic R., Physical-mechanical and microstructural properties of alkali-activated fly ash-blast furnace slag blends. Ceram. Int. 41, 2015, 1421–1435. DOI: 10.1016/j.ceramint.2014.09.075.
  • 13. Ben Haha M., Lothenbach B., Le Saout G., Winnefeld F., Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag – Part I: Effect of MgO. Cem. Concr. Res. 42, 2011, 74–83. DOI: 10.1016/j.cemconres.2011.08.005.
  • 14. Ben Haha M., Lothenbach B., Le Saout G., Winnefeld F., Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag – Part II: Effect of Al2O3. Cem. Concr. Res. 42, 2012, 74–83. DOI: 10.1016/j.cemconres.2011.08.005.
  • 15. Escalante García J.I., Materiales alternativos al cemento Pórtland. Av. Y Perspect. 21, 2002, 79–88.
  • 16. ASTM E11-95, Standard Specification for Wire Cloth and Sieves for Testing Purposes, West Conshohocken, PA, 2001. DOI: 10.1520/E0011-95.
  • 17. ASTM C109 / C109M-16a, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), West Conshohocken, 2016. DOI: 10.1520/ C0109_C0109M-16A.
  • 18. Chen X., Meawad A., Struble L.J., Method to Stop Geopolymer Reaction, J. Am. Ceram. Soc. 6, 2014. n/a–n/a. DOI: 10.1111/jace.13071.
  • 19. AENOR (Asociación Española de Normalización y Certificación), UNE-EN 1015-10:2000, Métodos de ensayo de los morteros para albañilería. Parte 10: Determinación de la densidad aparente en seco del mortero endurecido, 2000. http://www.aenor.es/aenor/normas/normas/ fichanorma.asp?tipo=N&codigo=N0022409#. V2JzACPRjIV.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-044ac204-d6ac-45b2-9a22-22cd4a8f917a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.