Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Dynamics of the nonlinear spring pendulum is analysed using two asymptotic approaches. The multiple scale method is commonly applied with using two time scales. The purpose of the research is to justify the introduction of an additional third scale. Results of the analysis clearly show that introducing the third scale improve correctness of the approximate analytical solution. The obtained results allow for qualitative and quantitative analysis of the behavior of the studied system with a high accuracy. Calculations are made both in the neighbourhood of the resonance and also far from it.
Czasopismo
Rocznik
Tom
Strony
art. no. 2018005
Opis fizyczny
Bibliogr. 9 poz., 1 rys., wykr.
Twórcy
autor
- Poznan University of Technology, Institute of Applied Mechanics ul. Jana Pawła II 24, 60-965 Poznań, Poland
autor
- Poznan University of Technology, Institute of Applied Mechanics ul. Jana Pawła II 24, 60-965 Poznań, Poland
autor
- Technical University of Łódź, Department of Automatics and Biomechanics, ul. Stefanowskiego 90-924, Łódź, Poland
Bibliografia
- 1. R. Starosta, G. Sypniewska-Kamińska, J. Awrejcewicz, Parametric and external resonances in kinematically and externally excited nonlinear spring pendulum, IJBC, 21(10) (2011) 3013 - 3021.
- 2. R. Starosta, G. Sypniewska-Kamińska, J. Awrejcewicz, Asymptotic analysis of kinematically excited dynamical systems near resonances, Nonlinear Dynamics, 68(4) (2012) 459 - 469.
- 3. J. Awrejcewicz, R. Starosta, G. Sypniewska-Kamińska, Asymptotic analysis of resonances in nonlinear vibrations of the 3-dof pendulum. Differ. Equ. Dyn. Syst. 21(1&2) (2013) 123 - 140.
- 4. J. Awrejcewicz, G. Kudra, G. Wasilewski, Chaotic zones in triple pendulum dynamics observed experimentally and numerically, Mechanics and Materials 9 (2008) 1 - 17.
- 5. K. Furuta, T. Ochiai, N. Ono, Attitude control of a triple inverted pendulum. International Journal of Control, 39 (1984) 1351 - 1365.
- 6. I. Fantoni, R. Lozano, M. W. Spong, Energy based control of the pendubot. IEEE Transactions on Automatic Control, AC-45 (2000) 725 - 729.
- 7. D. Sado, K. Gajos, Analysis of vibrations of three-degree-of-freedom dynamical system with double pendulum. J. of Theoretical and Applied Mechanics, 46(1) (2008) 141 - 156.
- 8. A. H. Nayfeh, Perturbation Methods. Wiley, New York 1973.
- 9. B. K. Shivamoggi, Perturbation Method for Differential Equations, Birkhauser, Boston 2002.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04418c51-f75e-4b5c-9010-31d0a8a111d3