Identyfikatory
Warianty tytułu
Influence of the structure of the electroactive compound on the luminescent and electrochromic properties
Języki publikacji
Abstrakty
This study investigates the relationship between the structure of organic compound and their electrochemical and optical properties, with a particular focus on donor-acceptor structures. Organic electronics, an emerging field with historical roots date back to discovery of organic semiconductors in the mid-20th century, offers notable advantages over traditional silicon-based electronics. That advantages include flexibility, lightweight, lower cost and the potential for large-area production. Based on the analysis of organic compounds, I have attempted to elucidate the relationship between the structure and optical and electrochemical properties of organic compounds. Donor-acceptor systems are known for their ease of charge transfer, which is crucial for enhancing both electrochromic and luminescent properties. Our research shows that even minor changes in structure can lead to significant variation in electrochromic and luminescent properties. This research not only increase our knowledge about fundamental principles governing organic electronics, but also paves the way for the development of advanced materials with tailored properties for application in flexible displays, smart windows, smart glasses and a organic light-emitting diodes (OLED’s). The potential inherent in organic electronics encourages ongoing exploration of new electroactive organic compounds and the dynamic development of knowledge regarding the relationship between the structure and properties of such molecules.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1467--1492
Opis fizyczny
Bibliogr. 84 poz., wykr.
Twórcy
autor
- Wydział Chemii, Uniwersytet im. Adama Mickiewicza w Poznaniu, Uniwersytetu Poznańskiego 8, 61-614 Poznań
Bibliografia
- [1] S. C. Rasmussen, The Early History of Polyaniline: Discovery and Origins, 2017, Vol 1 No 2 (2017)
- [2] F. M. Kelly , L. Meunier , C. Cochrane , and V. Koncar, Polyaniline: Application as solid state electrochromic in a flexible textile display, 2013, 34, 1
- [3] Y. Luo , R. Guo , T. Li , F. Li , Z. Liu , M. Zheng , B. Wang , Z. Yang , H. Luo , and Y. Wan, Application of Polyaniline for Li-Ion Batteries, Lithium–Sulfur Batteries, and Supercapacitors, 2019, 12, 1591
- [4] F. M. Kelly , L. Meunier , C. Cochrane , and V. Koncar, Polyaniline: Application as solid state electrochromic in a flexible textile display, 2013, 34, 1
- [5] M. Prosa , M. Bolognesi , L. Fornasari , G. Grasso , L. Lopez-Sanchez , F. Marabelli , and S. Toffanin, Nanostructured Organic/Hybrid Materials and Components in Miniaturized Optical and Chemical Sensors, 2020, 10, 480
- [6] S. R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic, 2004, 428, 911
- [7] S. Logothetidis, Flexible organic electronic devices: Materials, process and applications, 2008, 152, 96
- [8] C. S. Buga and J. C. Viana, A Review on Materials and Technologies for Organic Large-Area Electronics, 2021, 6, 2001016
- [9] O. Folorunso , P. Olukanmi , and S. Thokozani, Conductive polymers’ electronic structure modification for multifunctional applications, 2023, 35, 106308
- [10] S. Fletcher, The Definition of Electrochromism, 2015, 19, 3305
- [11] C.-M. Wu , S. Naseem , M.-H. Chou , J.-H. Wang , and Y.-Q. Jian, Recent Advances in Tungsten-Oxide-Based Materials and Their Applications, 2019, 6, 49
- [12] K. Madasamy , D. Velayutham , V. Suryanarayanan , M. Kathiresan , and K.-C. Ho, Viologen-based electrochromic materials and devices, 2019, 7, 4622
- [13] P. M. S. Monk, Charge Movement through Electrochromic Thin-Film Tungsten Trioxide, 1999, 24, 193
- [14] J. Sun and Z. Liang, Swift Electrofluorochromism of Donor–Acceptor Conjugated Polytriphenylamines, 2016, 8, 18301
- [15] X. Wan , C. Li , M. Zhang , and Y. Chen, Acceptor–donor–acceptor type molecules for high performance organic photovoltaics – chemistry and mechanism, 2020, 49, 2828
- [16] S. Horiuchi , T. Hasegawa , and Y. Tokura, Molecular Donor–Acceptor Compounds as Prospective Organic Electronics Materials, 2006, 75, 051016
- [17] Y. Wang and T. Michinobu, Benzothiadiazole and its π-extended, heteroannulated derivatives: useful acceptor building blocks for high-performance donor–acceptor polymers in organic electronics, 2016, 4, 6200
- [18] R. Kacimi , E. Tanıs , A. Azaid , Y. Khaddam , M. Raftani , S. Sarfaraz , L. Bejjit , and M. Bouachrine, Benzodithiophene-based Acceptor-Donor-Acceptor-type compounds for highly efficient organic photovoltaic cells, 2023, 830, 140774
- [19] G. A. Sotzing , C. A. Thomas , J. R. Reynolds , and P. J. Steel, Low Band Gap Cyanovinylene Polymers Based on Ethylenedioxythiophene, 1998, 31, 3750
- [20] C. Deibel , T. Strobel , and V. Dyakonov, Role of the Charge Transfer State in Organic Donor-Acceptor Solar Cells, 2010, 22, 4097
- [21] T. T. Steckler , P. Henriksson , S. Mollinger , A. Lundin , A. Salleo , and M. R. Andersson, Very Low Band Gap Thiadiazoloquinoxaline Donor–Acceptor Polymers as Multi-tool Conjugated Polymers, 2014, 136, 1190
- [22] D. F. Perepichka , M. R. Bryce , A. S. Batsanov , E. J. L. McInnes , J. P. Zhao , and R. D. Farley, Engineering a Remarkably Low HOMO–LUMO Gap by Covalent Linkage of a Strong π-Donor and a π-Acceptor—Tetrathiafulvalene-σ-Polynitrofluorene Diads: Their Amphoteric Redox Behavior, Electron Transfer and Spectroscopic Properties, 2002, 8, 4656
- [23] K. Müllen and W. Pisula, Donor–Acceptor Polymers, 2015, 137, 9503
- [24] S. Holliday , Y. Li , and C. K. Luscombe, Recent advances in high performance donor-acceptor polymers for organic photovoltaics, 2017, 70, 34
- [25] M. İçli , M. Pamuk , F. Algi , A. M. Önal , and A. Cihaner, Donor−Acceptor Polymer Electrochromes with Tunable Colors and Performance, 2010, 22, 4034
- [26] H. Bai , Y. Wang , P. Cheng , Y. Li , D. Zhu , and X. Zhan, Acceptor–Donor–Acceptor Small Molecules Based on Indacenodithiophene for Efficient Organic Solar Cells, 2014, 6, 8426
- [27] S. Zhang , M. U. Ocheje , L. Huang , L. Galuska , Z. Cao , S. Luo , Y.-H. Cheng , D. Ehlenberg , R. B. Goodman , D. Zhou , Y. Liu , Y.-C. Chiu , J. D. Azoulay , S. Rondeau-Gagné , and X. Gu, The Critical Role of Electron-Donating Thiophene Groups on the Mechanical and Thermal Properties of Donor–Acceptor Semiconducting Polymers, 2019, 5, 1800899
- [28] C.-L. Pai , C.-L. Liu , W.-C. Chen , and S. A. Jenekhe, Electronic structure and properties of alternating donor–acceptor conjugated copolymers: 3,4-Ethylenedioxythiophene (EDOT) copolymers and model compounds, 2006, 47, 699
- [29] S. Bibi , R. A. Khera , A. Farhat , and J. Iqbal, Triphenylamine based donor-acceptor-donor type small molecules for organic solar cells, 2021, 1198, 113176.
- [30] M. Bélières , V. Sartor , P.-L. Fabre , R. Poteau , G. Bordeau , and N. Chouini-Lalanne, Simple electron donor molecules based on triphenylamine and carbazole derivatives, 2018, 153, 275
- [31] J. Merz , M. Dietz , Y. Vonhausen , F. Wöber , A. Friedrich , D. Sieh , I. Krummenacher , H. Braunschweig , M. Moos , M. Holzapfel , C. Lambert , and T. B. Marder, Synthesis, Photophysical and Electronic Properties of New Red-to-NIR Emitting Donor–Acceptor Pyrene Derivatives, 2020, 26, 438
- [32] K. Chen , J. Zhao , X. Li , and G. G. Gurzadyan, Anthracene–Naphthalenediimide Compact Electron Donor/Acceptor Dyads: Electronic Coupling, Electron Transfer, and Intersystem Crossing, 2019, 123, 2503
- [33] A. Balan , G. Gunbas , A. Durmus , and L. Toppare, Donor−Acceptor Polymer with Benzotriazole Moiety: Enhancing the Electrochromic Properties of the “Donor Unit,” 2008, 20, 7510
- [34] K. Muras , M. Kubicki , and M. Wałęsa-Chorab, Benzochalcodiazole-based donor-acceptor-donor non-symmetric small molecules as dual-functioning electrochromic and electrofluorochromic materials, 2023, 212, 111098
- [35] H. Akpınar , A. Balan , D. Baran , E. K. Ünver , and L. Toppare, Donor–acceptor–donor type conjugated polymers for electrochromic applications: benzimidazole as the acceptor unit, 2010, 51, 6123
- [36] J. Zhang , W. Xu , P. Sheng , G. Zhao , and D. Zhu, Organic Donor–Acceptor Complexes as Novel
- [37] S. Amthor , C. Lambert , S. Dümmler , I. Fischer , and J. Schelter, Excited Mixed-Valence States of Symmetrical Donor−Acceptor−Donor π Systems, 2006, 110, 5204
- [38] S. Ellinger , K. R. Graham , P. Shi , R. T. Farley , T. T. Steckler , R. N. Brookins , P. Taranekar , J. Mei, L. A. Padilha , T. R. Ensley , H. Hu , S. Webster , D. J. Hagan , E. W. Van Stryland , K. S. Schanze , and J. R. Reynolds, Donor–Acceptor–Donor-based π-Conjugated Oligomers for Nonlinear Optics and Near-IR Emission, 2011, 23, 3805
- [39] S. Ullbrich , J. Benduhn , X. Jia , V. C. Nikolis , K. Tvingstedt , F. Piersimoni , S. Roland , Y. Liu , J. Wu , A. Fischer , D. Neher , S. Reineke , D. Spoltore , and K. Vandewal, Emissive and charge-generating donor–acceptor interfaces for organic optoelectronics with low voltage losses, 2019, 18, 459
- [40] X. Chen , X. Zhang , X. Xiao , Z. Wang , and J. Zhao, Recent Developments on Understanding Charge Transfer in Molecular Electron Donor-Acceptor Systems, 2023, 62, e202216010
- [41] J. W. Lichtman and J.-A. Conchello, Fluorescence microscopy, 2005, 2, 910
- [42] S. Yao , H.-Y. Ahn , X. Wang , J. Fu , E. W. Van Stryland , D. J. Hagan , and K. D. Belfield, Donor−Acceptor−Donor Fluorene Derivatives for Two-Photon Fluorescence Lysosomal Imaging, 2010, 75, 3965
- [43] J. Lu , B. Pattengale , Q. Liu , S. Yang , W. Shi , S. Li , J. Huang , and J. Zhang, Donor–Acceptor Fluorophores for Energy-Transfer-Mediated Photocatalysis, 2018, 140, 13719
- [44] S. Ming , S. Zhen , K. Lin , L. Zhao , J. Xu , and B. Lu, Thiadiazolo[3,4- c ]pyridine as an Acceptor toward Fast-Switching Green Donor–Acceptor-Type Electrochromic Polymer with Low Bandgap, 2015, 7, 11089
- [45] S. V. Rosokha and J. K. Kochi, Fresh Look at Electron-Transfer Mechanisms via the Donor/Acceptor Bindings in the Critical Encounter Complex, 2008, 41, 641
- [46] C. Chen and C. Fang, Devising Efficient Red‐Shifting Strategies for Bioimaging: A Generalizable Donor‐Acceptor Fluorophore Prototype, 2020, 15, 1514
- [47] M. Ahn , M.-J. Kim , D. W. Cho , and K.-R. Wee, Electron Push–Pull Effects on Intramolecular Charge Transfer in Perylene-Based Donor–Acceptor Compounds, 2021, 86, 403
- [48] C. Liu , W. Hu , H. Jiang , G. Liu , C. C. Han , H. Sirringhaus , F. Boué , and D. Wang, Chain Conformation and Aggregation Structure Formation of a High Charge Mobility DPP-Based Donor–Acceptor Conjugated Polymer, 2020, 53, 8255
- [49] Y. Takeda, Modulating the Photophysical Properties of Twisted Donor–Acceptor–Donor π-Conjugated Molecules: Effect of Heteroatoms, Molecular Conformation, and Molecular Topology, 2024, acs.accounts.4c00353
- [50] P. M. Beaujuge , S. Ellinger , and J. R. Reynolds, The donor–acceptor approach allows a black-to-transmissive switching polymeric electrochrome, 2008, 7, 795
- [51] M. H. Chua , Q. Zhu , T. Tang , K. W. Shah , and J. Xu, Diversity of electron acceptor groups in donor–acceptor type electrochromic conjugated polymers, 2019, 197, 32
- [52] S. Hellström , T. Cai , O. Inganäs , and M. R. Andersson, Influence of side chains on electrochromic properties of green donor–acceptor–donor polymers, 2011, 56, 3454
- [53] L. E. Polander , L. Pandey , S. Barlow , S. P. Tiwari , C. Risko , B. Kippelen , J.-L. Brédas , and S. R. Marder, Benzothiadiazole-Dithienopyrrole Donor–Acceptor–Donor and Acceptor–Donor–Acceptor Triads: Synthesis and Optical, Electrochemical, and Charge-Transport Properties, 2011, 115, 23149
- [54] K. He , S. Chen , Y. Chen , J. Li , P. Sun , X. Lu , Q. Fan , and W. Huang, Water-Soluble Donor–Acceptor–Donor-Based Fluorophore for High-Resolution NIR-II Fluorescence Imaging Applications, 2021, 3, 3238
- [55] S. Izumi , H. F. Higginbotham , A. Nyga , P. Stachelek , N. Tohnai , P. D. Silva , P. Data , Y. Takeda, and S. Minakata, Thermally Activated Delayed Fluorescent Donor–Acceptor–Donor–Acceptor π-Conjugated Macrocycle for Organic Light-Emitting Diodes, 2020, 142, 1482
- [56] Y. Cai , K. Samedov , B. S. Dolinar , H. Albright , Z. Song , C. Zhang , B. Z. Tang , and R. West, AEE-active cyclic tetraphenylsilole derivatives with ∼100% solid-state fluorescence quantum efficiency, 2015, 44, 12970
- [57] I. H. M. Van Stokkum , T. Scherer , A. M. Brouwer , and J. W. Verhoeven, Conformational dynamics of flexibly and semirigidly bridged electron donor-acceptor systems as revealed by spectrotemporal parametrization of fluorescence, 1994, 98, 852
- [58] G. Sun , Y.-C. Wei , Z. Zhang , J.-A. Lin , Z.-Y. Liu , W. Chen , J. Su , P.-T. Chou , and H. Tian, Diversified Excited-State Relaxation Pathways of Donor–Linker–Acceptor Dyads Controlled by a Bent-to-Planar Motion of the Donor, 2020, 59, 18611
- [59] J. S. Ward , R. S. Nobuyasu , M. A. Fox , A. S. Batsanov , J. Santos , F. B. Dias , and M. R. Bryce, Bond Rotations and Heteroatom Effects in Donor–Acceptor–Donor Molecules: Implications for Thermally Activated Delayed Fluorescence and Room Temperature Phosphorescence, 2018, 83, 14431
- [60] K. Funabiki , K. Yamada , Y. Arisawa , A. Watanabe , T. Agou , Y. Kubota , T. Inuzuka , Y. Miwa , T. Udagawa , and S. Kutsumizu, Design, Regioselective Synthesis, and Photophysical Properties of Perfluoronaphthalene-Based Donor–Acceptor–Donor Fluorescent Dyes, 2022, 87, 11751
- [61] J.-A. Lin , S.-W. Li , Z.-Y. Liu , D.-G. Chen , C.-Y. Huang , Y.-C. Wei , Y.-Y. Chen , Z.-H. Tsai , C.-Y. Lo , W.-Y. Hung , K.-T. Wong , and P.-T. Chou, Bending-Type Electron Donor–Donor–Acceptor Triad: Dual Excited-State Charge-Transfer Coupled Structural Relaxation, 2019, 31, 5981
- [62] A. Mahmood , M. I. Abdullah , and S. U.-D. Khan, Enhancement of nonlinear optical (NLO) properties of indigo through modification of auxiliary donor, donor and acceptor, 2015, 139, 425
- [63] X. Che , C. Chung , X. Liu , S. Chou , Y. Liu , K. Wong , and S. R. Forrest, Regioisomeric Effects of Donor–Acceptor–Acceptor′ Small‐Molecule Donors on the Open Circuit Voltage of Organic Photovoltaics, 2016, 28, 8248
- [64] Y. Ding , C. Zhang , L. Zhang , Y. Zhou , and G. Yu, Molecular engineering of organic electroactive materials for redox flow batteries, 2018, 47, 69
- [65] S. Nad , R. Jana , A. Datta , and S. Malik, Fully organic electroactive monomers for electrochromic behaviors having high coloration efficiency and long cycle stability towards flexible Solid-State electrochromic device, 2022, 918, 116484
- [66] C. Costentin , J. Fortage , and M.-N. Collomb, Electrophotocatalysis: Cyclic Voltammetry as an Analytical Tool, 2020, 11, 6097
- [67] M. A. Pellitero and F. J. del Campo, Electrochromic sensors: Innovative devices enabled by spectroelectrochemical methods, 2019, 15, 66
- [68] O. Galangau , I. Fabre-Francke , S. Munteanu , C. Dumas-Verdes , G. Clavier , R. Méallet-Renault , R. B. Pansu , F. Hartl , and F. Miomandre, Electrochromic and electrofluorochromic properties of a new boron dipyrromethene–ferrocene conjugate, 2013, 87, 809
- [69] M. Sendur , A. Balan , D. Baran , B. Karabay , and L. Toppare, Combination of donor characters in a donor–acceptor–donor (DAD) type polymer containing benzothiadiazole as the acceptor unit, 2010, 11, 1877
- [70] S. Tarkuc , Y. A. Udum , and L. Toppare, Tuning of the neutral state color of the π-conjugated donor–acceptor–donor type polymer from blue to green via changing the donor strength on the polymer, 2009, 50, 3458
- [71] A. Kurowska , P. Zassowski , A. S. Kostyuchenko , T. Yu. Zheleznova , K. V. Andryukhova , A. S. Fisyuk , A. Pron , and W. Domagala, Effect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives, 2017, 19, 30261
- [72] K. L. Winkel , J. R. Carberry , L. M. Wood , M. Araya , Z. W. Iszard , T. Cantu , B. Martin , X. Li , and J. A. Irvin, Donor–acceptor–donor polymers utilizing pyrimidine-based acceptors, 2014, 83, 113
- [73] J. Liu , L. Li , R. Xu , K. Zhang , M. Ouyang , W. Li , X. Lv , and C. Zhang, Design, Synthesis, and Properties of Donor–Acceptor–Donor′ Asymmetric Structured Electrochromic Polymers Based on Fluorenone as Acceptor Units, 2019, 1, 1081
- [74] D. Eroglu , E. G. C. Ergun , and A. M. Önal, Cross-exchange of donor units in donor-acceptor-donor type conjugated molecules: Effect of symmetrical and unsymmetrical linkage on the electrochemical and optical properties, 2020, 76, 131164
- [75] H. Ting , Y. Chen , L. Lin , S. Chou , Y. Liu , H. Lin , and K. Wong, Benzochalcogenodiazole‐Based Donor–Acceptor–Acceptor Molecular Donors for Organic Solar Cells, 2014, 7, 457
- [76] S. S. Mahadik , D. R. Garud , M. K. Ghadiyali , S. Chacko , and R. M. Kamble, 2,2′,3,3′-Tetrakis(4-bromophenyl)-6,6′-biquinoxaline based novel Donor–Acceptor–Acceptor−Donor (DAAD) Blue−Orange emitting molecules: Opto-electrochemical, AIE and theoretical investigation, 2022, 252, 119350
- [77] B. Lim , S.-Y. Han , and Y.-C. Nah, Highly soluble diketopyrrolopyrrole-based donor-acceptor type small molecule for electrochromic applications, 2018, 63, 23
- [78] Q. Huang , J. Chen , S. Yan , X. Shao , Y. Dong , J. Liu , W. Li , and C. Zhang, New Donor–Acceptor–Donor Conjugated Polymer with Twisted Donor–Acceptor Configuration for High-Capacitance Electrochromic Supercapacitor Application, 2021, 9, 13807
- [79] Q. Lu , C. Yang , X. Qiao , X. Zhang , W. Cai , Y. Chen , Y. Wang , W. Zhang , X. Lin , H. Niu , and W. Wang, Multifunctional AIE-active polymers containing TPA-TPE moiety for electrochromic, electrofluorochromic and photodetector, 2019, 166, 340
- [80] G. A. Corrente , D. A. González , E. Aktas , A. L. Capodilupo , F. Ruighi , G. Accorsi , D. Imbardelli , C. Rodriguez-Seco , E. Martinez-Ferrero , E. Palomares , and A. Beneduci, Reversible vis-NIR electrochromic/electrofluorochromic switching in dual-functional devices modulated by different benzothiadiazole-arylamine anodic components, 2023, 11, 17115
- [81] J.-J. Huang , H.-A. Lin , C. Chen , P.-W. Tang , and S.-C. Luo, Corannulene-based donor–acceptor-type conjugated polymers with electrochromic properties, 2021, 9, 7919
- [82] Y. Zhang , L. Kong , H. Du , J. Zhao , and Y. Xie, Three novel donor-acceptor type electrochromic polymers containing 2,3-bis(5-methylfuran-2-yl)thieno[3,4-b]pyrazine acceptor and different thiophene donors: Low-band-gap, neutral green-colored, fast-switching materials, 2018, 830–831, 7
- [83] R. Rybakiewicz , E. D. Glowacki , L. Skorka , S. Pluczyk , P. Zassowski , D. H. Apaydin , M. Lapkowski , M. Zagorska , and A. Pron, Low and High Molecular Mass Dithienopyrrole–Naphthalene Bisimide Donor–Acceptor Compounds: Synthesis, Electrochemical and Spectroelectrochemical Behaviour, 2017, 23, 2839
- [84] M. Wałęsa-Chorab , K. Muras , H. L. Filiatrault , and W. G. Skene, Suitability of alkyne donor-π-donor-π-donor scaffolds for electrofluorochromic and electrochromic use, 2022, 10, 3691
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-043edef1-07cb-4a7a-b064-fd292834691d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.