PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energy characteristics of asynchronous electric drive

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Energy aspects are fundamental to the design of electric drive systems. This article describes energy performance for asynchronous electric drives based on various control methods. These electric drives comparison shows that vector control methods have a significant advantage over scalar control methods. The asynchronous electric drive mathematical description is based on vector control theory and main component method. Equations, obtained by mathematical description, allow calculating of the currents, voltages and electric power at the output when the electromagnetic torque and speed machine are set. Energy characteristics of the asynchronous drive were obtained with the use of the MATLAB-SIMULINK simulation program.
Wydawca
Rocznik
Tom
Strony
s. 51--54
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • Maritime University of Szczecin ul. Wały Chrobrego 1-2, 70-500 Szczecin, Poland
  • Admiral Makarov State University of Maritime and Inland Shipping Saint-Petersburg, Russia
  • Maritime University of Szczecin ul. Wały Chrobrego 1-2, 70-500 Szczecin, Poland
Bibliografia
  • [1] F. Blaschke. “Das Prinzip der Feldorientierung-die Grundlage fur die Transvektor-Regulung von Drehfeldmaschienen”. Siemens: Z., 1972, №1, pp. 757- 760.
  • [2] L. Boychuk. Method of structural synthesis of nonlinear automatic control systems. Energy: Moscow, 1971, p. 321.
  • [3] Braslawski, Z. Ishmatov and E. Barac. „Adaptive direct control moment of asynchronous drives”. Electrical engineering, vol. 1, pp. 19-24, 2001, no. 11.
  • [4] V. Brodovski and E. Ivanov. Elektric drives with frequency-current control. Energy: Moscow, 1974, pp. 168.
  • [5] A. A. Bulgakov. A new theory of control rectifiers. Nauka: Moscow, 1970, p. 276.
  • [6] M. Depenbrock. “Direct Self-Control (DSC) of Inverter-Fed Induction Machine”. IEEE Transaction On Power Electronics, 1988, Vol. 3, no. 4.
  • [7] S. G. German Galkin. Virtual laboratory of semiconductor systems in Matlab-Simulink Wednesday. Lane: S. Petersburg, 2013, p. 450.
  • [8] K. Kovacs and I. Raz Transitional processes in machines of alternetic current. Gosjenergoizdat: MoscowLeningrad, 1963, p. 789.
  • [9] T. Orłowska–Kowalska. Sensorless induction motor drives. University of Technology Press: Wroclaw, 2003, p. 165.
  • [10] O.S. Popow. Elementy teorii systemów – systemy dynamiczne. Politechnika Szczecińska, Wydział Informatyki: Szczecin, 2005, p. 233.
  • [11] A.S. Sandler and R.S. Sarbatov. Automatic frequency control of induction motors. Energiia: Moscow, 1974, p. 163.
  • [12] O. Slezhanovskij, L. Dackovskij, I. Kuznetsov, E. Lebedev, L. Tarasenko. The slave systems for control electric drive with semicondactor converters. Energoatomizdat: Moscow, 1983, pp. 342.
  • [13] G. G. Sokolovski. AC electric drives with frequency control. Academy: Moscow, 2006, p. 318.
  • [14] I. Takahashi, T. Noguchi. „New Quick-Response and High-Efficiency Control Strategy of an Induction Motor”. IEEE Transaction On Industry Application, 1986. Vol. 22, no 5.
  • [15] D. Tarnapowicz, S. German-Galkin. “Energy optimization of mechatronic systems with PMSG”, “3rd International Conference on Energy and Environmental Protection”. 2018, Vol. 46, pp. 1-8. DOI: 10.1051/e3sconf/20184600016.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-043c8ee3-e172-4309-a2e9-0663104cbbca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.