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Abstract. A potential vector field is a solution of an extended WDVV equation which is
a generalization of a WDVV equation. It is expected that potential vector fields corresponding
to algebraic solutions of Painlevé VI equation can be written by using polynomials or
algebraic functions explicitly. The purpose of this paper is to construct potential vector fields
corresponding to more than thirty non-equivalent algebraic solutions.
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1. INTRODUCTION

In [13], the authors generalized the theory of Frobenius manifolds and WDVV equation
so that an extended WDVV equation in the semisimple and three dimensional case is
equivalent to the Painlevé VI equation. A solution to the extended WDVV equation
is called a potential vector field"). The Painlevé VI equation is given by

dw_1(1 1 1 dw\? L1 1 \dw
e 2\w w-1 w—t)\dt tot—1 w—t) dt

w(w — 1)(w 1) ((900—1)2 o2 05t = 1) <1—ez>t<t—1>>_

202(t — 1)2 Cw? (w—1)2 (w— )2

(1.1)

1) A potential vector field is defined in [19]. A similar notion called “a local vector potential”
is introduced by Yu. Manin [21].
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The equation (1.1) has four parameters 6 = (6,,6,,0.,0). In general, solutions to
(1.1) are transcendental functions of ¢. However for some values of the parameter,
solutions to (1.1) can be expressed via polynomials, classical functions or algebraic
functions. A solution w = w(t) to (1.1) means algebraic if there is a polynomial P(u,v)
of w, v such that P(¢,w) = 0. It is expected that potential vector fields corresponding to
algebraic solutions can be written by using polynomials or algebraic functions explicitly.
The purpose of this paper is to construct potential vector fields corresponding to many
of algebraic solutions.

Algebraic solutions to Painlevé VI equation are studied and constructed by many
authors, for example, K. Iwasaki [11], N.J. Hitchin [9,10], B. Dubrovin [6], B. Dubrovin
and M. Mazzocco [7], P. Boalch [2-5], F.V. Andreev — A.V. Kitaev [1], A.V. Kitaev
[15-17], A.V. Kitaev and R. Vidunas [18,31]. After these efforts, a classification of such
solutions was accomplished by O. Lisovyy and Y. Tykhyy (cf. [20]) showing that there is
no solution except those constructed so far. As is mentioned in [20], algebraic solutions
are related to various mathematical structures, including, for example, Frobenius
manifolds [6], symmetry groups of regular polyhedra [7], [10], complex reflection groups
[2], Grothendiek’s dessins d’enfants and their deformations [1,16,17]. Among others
we focus our attention to the relationship between algebraic solutions and Frobenius
manifolds or their generalization studied in [12,13].

At the end of 1970’s, K. Saito introduced the notion of flat structure in order to
study structures of the parameter spaces of the versal families of isolated hypersurface
singularities [26] (see also [27]). After his pioneering work with the collaborators
T. Yano and the third author of this paper, B. Dubrovin [6] unified both the flat
structure formulated by K. Saito and the WDV'V equation which arose from the 2D
topological field theory as the Frobenius manifold structure and as an application, he
derived a one-parameter family of the Painlevé VI, written by Painlevé VIu (u € C)
from the three dimensional Frobenius manifolds®. Solutions to the Painevé VIy are
transcendental, but some of them become algebraic. In the formulation by B. Dubrovin,
the existence of prepotentials plays a central role in the construction of Frobenius
manifold structure. He obtained four non-cubic polynomial prepotentials in the three
dimensional Frobenius manifolds. They are given by

2 2 2,.2 5
r125 + X523 1T XY
P 8 Aj case
> 4 o0 T
P x173 + xjwy | wyay | aiad + LZ, Bs case,
B 6 6 210 (1.2)
o via3 +ases | wjey  xfay o oxf! . Hj case,
2 6 20 3960
2 2
T123 + 150
F= % + 5.

(The last one is essentially reduced to two dimensional case (cf. [6]).) It is underlined
here that K. Saito already recognized the first three prepotentials when he formulated

2) For a general theory on Frobenius manifolds and WDVV equation, see, for example, Sabbah (23],
Hertling [8].
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the flat structure (unpublished). Dubrovin [6] constructed algebraic solutions corre-
sponding to these prepotentials. In [7], Dubrovin and Mazzocco classified algebraic
solutions to Painlevé VIu, showing that algebraic solutions to Painlevé VI are in
one-to-one correspondence with the regular polyhedra or star-polyhedra in the three
dimensional space. As a result, they constructed five algebraic solutions to Painlevé
VIp and among them, three are done by using the polynomial prepotentials above. As
to the remaining two solutions obtained by Dubrovin and Mazzocco, prepotentials are
not polynomials and their explicit forms are given in the main text of this paper.

We now explain an idea how an algebraic solution of Painlevé VI arose from
WDVYV equation based on Dubrovin [6] and [13], restricting to the case n = 3. For
this purpose, we give a brief explanation of the definition of WDVV equation and
prepotentials. Let F'(x) = F(z1, 22, 23) be a function of the following form

Lo 1,
F= §x1x3 + §x2x3 + Fo(x1, x2).

Assume that F(x) is weighted homogeneous. This means that there are non-zero
numbers di,ds,,ds,d such that EFF = dF, where £ = 2?21 d;jr;0,; is an Euler

vector field. We also assume for simplicity that each d; is a rational number®) and
that? 0 < d; < dy < d3 = 1. Using F, we define 9j = Oz, F (j = 1,2,3) and put
P = (g1, 92, 93). By differentiating P with respect to 1,2, z3, we obtain 3-vectors
O, P and construct a matrix C' = (Cj;) by

Oy, P
c=|a,P
O, P

In particular C;; = 9,,9; and 0., P = (x1, x2, x3). Moreover we put B®) = 0., C. Tt
follows from the definition that (B*));; = 0,,9,,9;. As a consequence, (B®));; =
(B(i))kj. It is clear from the definition that C' — x313 is independent of x3. This implies
that B®) = I;. We introduce the matrix T' = EC for later consideration.

If all the matrices BUY) (j = 1,2,3) commute with each other, the function F’
is called a prepotential or free energy (cf. [6]). Since B = I3, the commutativity
condition is reduced to the unique equation B B®) = B?) B Writing down the
matrix entries of BMB®) = B@ B we obtain non-linear differential equations
for F'. The collection of such differential equations is called a WDVV equation. As
a consequence, a prepotential is a solution of WDV'V equation. Moreover in this case,
x = (x1, 22, x3) is called a flat coordinate.

We assume that F' = F(x1,x2,x3) is a prepotential and keep the notation intro-
duced above, define a diagonal matrix B((,g) by Bg) = diag(r + d1,r + do, 7 + d3) for
some constant r € C and also define 3 x 3 matrices BY) (j = 1,2,3) by

i) -1 3
BU) = _771BWBM). (1.3)
3) In general, we need to consider d;j a complex number in order to treat transcendental solutions.

However our interest in this paper is restricted to algebraic solutions.
4) Sometimes we treat the case where d; = da.
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Using BY), we introduce a system of differential equations

9., Y = BYY (j=1,2,3). (1.4)
The system (1.4) is integrable. We put Ty = 2313 — T'. Since T — x313 does not depend
on x5 and since B®) = —T_lBg), the differential equation
Dz, Y = BOY (1.5)
turns out to be 1
(z313 — Tp)0p, Y = —d—Bgi)Y. (1.6)
3

Since (1.6) is an ordinary differential equation with respect to the variable z3, (1.6) is
called an ordinary differential equation of Okubo type. In this sense, the system
(1.4) is one of generalizations of Okubo type ordinary differential equation to several
variables case.

We are in a position to explain the relationship between the system of differential
equations (1.4) and solutions to Painlevé VI equation. Since h = detT is a cubic
polynomial of z3, let p;(2’) (j = 1,2,3) be defined by h(z) = H?Zl(xg — pi(z")),
where 2’ = (21, 25). We consider B®) = —T~1BG®) BY) as before. It follows from the
definition that if i # j, the (4,5)-entry of hB®) is a linear function of x3. Noting
this, we define p;;(2’) (¢ # j) by the condition that x3 = p;;(2’) is the zero of the

det(T)(T™ 1)
Ti]'

(i, j)-entry of hB®). Then it is easy to show that p;; = _o- It can be

3

shown that w;; = % is a solution to Painlevé VI equation as a function of

_ p3(@)—pi(z)
T p2(a)—pi(@)” .
It is underlined here that some of the arguments so far go well forgetting the

existence of a WDVV equation. This leads us to the following study. We start with
introducing weighted homogeneous functions hq(z), ha(z), h3(x) such that Eh; =
(dj + d3)hj (] = 1,2,3) and that

wjes +h0 (@) (5 =1,2),

hi=<1
T e @) (=3)

(1.7)

with functions h;o)(ac’) of #’ = (x1,xz2). If there is a solution F = F(z) to a WDVV
equation, h; = 0., ,F (j = 1,2,3) satisfy (1.7). We return to our situation. Using
hj(z) (j = 1,2,3), we define a 3 x 3 matrix C such that C;; = 0,,h;. It is easy to
see that C3; = z; (j = 1,2,3). We define matrices BY) = 9,,C (j = 1,2,3) and
T =Y ,djz;0,,C =Y djz;BY. 1f BUB® = BOBW  then h = (hy, hy, hs)
is called a potential vector field and (x1, x2, x3) is a flat coordinate. Similar to the case
of prepotentials, a potential vector field is a solution to a certain system of non-linear
differential equations arising from the commutativity of matrices B() (j =1,2,3).
In this sense, BOB® = B@ B s called an extended WDVV equation for h. It is
possible to construct a flat structure from the existence of a potential vector field h.
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One of the reasons why we are led to the study on flat structures not necessary
having a prepotential is to understand the relationship between a special kind of
holonomic systems of three variables with singularities along free divisors and algebraic
solutions to Painlevé VI equation. In this direction, systems of differential equations
of Okubo type in several variables play an important role in attaching a flat structure
to an algebraic solution to Painlevé VI equation. A polynomial potential vector field
means a potential vector field P = (hq, ha, h3) whose entries hq, ho, hg are polynomials
of a flat coordinate. An algebraic potential vector field means a potential vector field
P = (hq, ha, h3) such that h; (j = 1,2, 3) are algebraic functions of a flat coordinate.
The following problem is also basic.

Problem A. Classify all the polynomial and algebraic potential vector fields.

It is not clear whether there is an algebraic potential vector field corresponding
to any algebraic solution to Painlevé VI or not. Then Problem A would imply a new
answer to the classification of algebraic solutions to Painlevé VI equations. This
suggests that problem A is not easy to solve. An easier but still interesting problem is

Problem B. For a given algebraic solution to Painlevé VI equation, construct
a potential vector field and its associated flat coordinate.

The main objective in this paper is Problem B. We will construct potential vector
fields corresponding to many algebraic solutions obtained by the authors cited above.
The methods employed in this paper are not systematic. We will explain one of ideas
how we get potential vector fields from algebraic solutions to Painlevé VI equation.
In spite that our purpose is to construct potential vector fields for all the forty five
equivalent classes of algebraic solutions to Painlevé VI equation given in [20], there
are many obstructions to accomplish it. We think that this reflects the difficulty of the
classification of algebraic solutions. We start with a pair (w,t), where ¢ is a variable
and w = w(t) is an algebraic solution to Painlevé VI equation. Let w = w(s), t = t(s)
be their parametric representations. Our first job is to construct a free divisor in the
three dimensional affine space which connects with ¢ = ¢(s). The second job is to
construct systems of differential equations of rank two whose singularities are contained
in the free divisor. Applying the argument in [13, Appendix B] to the system of rank
two, we can construct an Okubo type system in several variables of three variables.
Then a potential vector field is deduced in a natural manner. The details are explained
in §2 by taking an example of algebraic solutions. It is underlined here that the first
author (M. K.) found a systematic method to construct a potential vector field from
an algebraic solution available at least to genus zero and genus one algebraic solutions.
We show prepotentials for algebraic solutions obtained by Dubrovin and Magzzocco
[7] in §3. The main purpose of this paper is to construct polynomial and algebraic
potential vector fields corresponding to algebraic solutions to Painlevé VI equation.
We obtained more than thirty such potential vector fields and the results are collected
in §4.



206 Mitsuo Kato, Toshiyuki Mano, and Jiro Sekiguchi

2. A METHOD OF CONSTRUCTING A POTENTIAL VECTOR FIELD
FROM AN ALGEBRAIC SOLUTION TO PAINLEVE VI EQUATION

In this section, we explain a method to construct potential vector fields from algebraic
solutions to Painlevé VI equation. Before entering into the main text, we explain other
ideas to construct them. As was explained in §1, Dubrovin [6] constructed polynomial
prepotentials by solving WDVV equation in three variables directly. Similarly, it
is possible to find polynomial potential vector fields by solving extended WDVV
equations directly. It seems difficult to treat non polynomial case by this idea. The
other one is to use Belyi maps introduced by A. V. Kitaev (cf. [16]). Since it is a little
complicated to explain this idea, we don’t discuss its details here.
We treat here solution 24 in [3] (same as Solution 11 in [20]) defined by

_ s(s+4)(3s* —25% — 257 + 85+ 8) L s5(s+4)3 2.1)
T TR ) (s 12(s2+4) T 4As—D(s+1)pB(s2 42
Its parameter is (%, %, %, %)

2.1. DETERMINATION OF A FREE DIVISOR IN THIS CASE

In this subsection, the notion of free divisor is freely used. The readers who want to
know its definition and basic properties, see K. Saito [25].
P(-u)

P(u)

, where ¢ is given in (2.1). In this case, an easy

coincides

b
We start with finding u = as+
cs+d

1 1 t t—
with one of £,1 — ¢, —, , ,
t'1—t t—1 t

computation shows that

and a polynomial P(u) such that

s+4

P P(u) = (u—5)(u+ 3)3(u? — 2u + 5)*

are required ones. In fact, it follows that

Lo (—2+5)3(243s)(2+ 2s + s?)?  P(—u)
o 4(-1+s8)(1+s)34+s2)2  Plu)

Using P(u), we define a weighted homogeneous polynomial fo(x1, 22, x3) by

Jo(z1,22,23) = w33 — 2f P(\/T2/21)) (23 — 2} P(—\/T2/21)).

From the definition,

fo = 23(23 + Q1(1,22)73 + Qa2(21,72)),
where
Q1 = —2(33752% + 18025z, + 102123 4 202323 — 23),
Qo = 11390625x1° + 12150001425 4 9990021223 — 12354421023 + 5502525 + 402525

+ 380 xS — 4022x] + 3.
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Since x3 = 0 satisfies fy = 0, we put z; = 0. Let 20 = 2zo(x1,23) be an algebraic
function of x1, o such that 3 = z5 is a non-trivial solution of fo = 0 as an equation
of x3. Putting

23 = —67502%5 — 360252y — 202 23 — 402323 + 225 — 2o, (2.2)
we find that fo = (z3 — 21) (23 — 22) (23 — 23) and
Zg + Q122+ Q2 =0. (23)

We are going to show that fy = 0 is a free divisor. For this purpose, we define
a matrix M by

M =
X1 2172 82173

2252 + 37z, 1012527 + 810z — 4525 — 5,
- ( 14112 5 L 3) % +68x123 + 6273 8% ( Lot 3)

—141x{z5 + Txy —od 3y —15z725 + x5

337528 — 9028z

1 —283343;2 N 74;2;3 20z, zy (202525 + 1412102\  gog g (67520 + 272112
3 172 12 3 —&—111:%33% — x%’ 3 —&—x%x% + a:g

—325 + 373
(2.4)

Let V1, V5, V3 be vector fields defined by
(Vi, Vo, V3)" = M(0y,, Ory, Ou)"-
Then it is easy to show that
det(M) =8fo, Vifo=24fo, Vjfo=0(j=2,3),

which means that fy = 0 is a free divisor.

2.2. CONSTRUCTION OF HOLONOMIC SYSTEMS OF RANK TWO

Let R = C[x1, 2, 23] be the coordinate ring of C* and put £ = R[V;, Va, V3]. Then it
is easy to see that £ is a Lie algebra over R. In fact we have the following relations
among V1, Vs, Vs:

V1, V2] = 6V,

[Vi, V] = 7V, (2.5)

[V?’ V3] = kl(x)vl + k’?(x)v? + k’g(l‘)Vg,

where k; are weighted homogeneous polynomials contained in R.

It is possible to consider a special kind of left £-modules defined similarly as those
treated in [29]. To formulate the content precisely, we consider an unknown function
u = u(z1, T2, x3) such that Viu = qou for a constant gy and define a left R-module N/
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generated by u and Vou, namely, N' = Ru + RVau. We assume that LA = A. Then
we have a system of differential equations

V1UZQOU7
(Vo)?u=q1(z)u + q2(z)Vau, (2.6)
Vau=q3(z)u + q4(z)Vau,
where ¢o € C, ¢;(x) € R (i = 1,2,3,4) (cf. [29, (7)]). We assume that each g¢;(x)
is weighted homogeneous and are going to rewrite the system (2.6) to that for
a vector-valued function. As a result, we obtain a system of differential equations of

the form
Vyii = Ajit (j = 1,2,3), (2.7)

L [ u
where 1 = (Vgu> and

(3) (3

qo 0 0 1 > aiy  ajy
A = , A= , Az = ) 2.8
! (0 6+QO> 2 (a;QI) ag) 2 a(231) a(;;) (2:8)

Note that ag), a(222), aﬁ), a(l‘z), ag), ag‘? € R and they are weighted homogeneous.

With the help of the relations (2.5), we obtain the following compatibility conditions
on the matrices Ay, Ao, As:

[A1, Ao] + [Vi, Ag] — 645 = O,

[A1, A5] + [V1, A3] = 745 = O, (2.9)

[A27A3] — [V27A3} + [‘/3, AQ] =+ kl(l‘)Al =+ k’g(l‘)Ag =+ k’g(I)A:; = O
The first and the second relations of (2.9) imply that each matrix entry of As, A3 is
weighted homogeneous. On the other hand, the third one implies non-trivial equations
among the matrix entries of Ao, As.

The relations (2.9) are rewritten in a familiar form which we are going to explain.
Since (V1, Vo, V3)t = M (0, , Oy, Ozy)t, we introduce 2 x 2 matrices By, By, B3 by

(B1, Ba, B3)' = M~ Y(Ay, Ag, A3)'. (2.10)
Then fyB; has polynomial entries and the system (2.7) is equivalent to
Oy, = Byl (j =1,2,3). (2.11)
The integrability condition for (2.11) is

0B; 9B, _
(%cj (“)xz -

[Bi, Bj] + O (for all 4, ). (2.12)
It is clear that (2.12) is also an integrability condition for A/

If there exist three matrices Ay, As, A3 of the forms (2.8) satisfying the condition
(2.9), we obtain a system of the form (2.7). By direct computation, we find that there
are three cases of A, A, A3 satisfying (2.9).
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The result is given as follows.

(a) The first case:
The matrix entries of the matrices Ao, A3 are defined as follows.

af?) = o5r 12 378675012 — 493050015 + 3385252522 + 30420543
— 5795z x5 + 390z2x5 — 1325 4 1000z} x3),
18
ag? = —(45x§' + bafwy + 15xtxd — ),
(3) 192 3/e A 2 2
ai;7 = ——a7(5x] — 12x7x0 — x5),
11 5 1( 1 142 2) (213)
ag) = —10z4,
24
ald) = : ;51 (4781325212 + 241665021025 — 2185252522 + 871802523
+ 6755z x5 — 6302225 4 1325 + 14002 25 + 40023 x013),
12
aé‘? =0 (194528 + 2732 2o + 192723 + 323).
(b) The second case:
The matrix entries of As, Az are defined as follows.
12
a$? = a5 (501217527 4 162885021y + 4337250 + 262200723
— 109527 x5 — 5102225 + 2725 + 15002723 — 50022 292:3),
ag) =3¢ (45961 + batay + 152222 — a3),
1
aﬁ) _ 16z (60528 + 1412 2o + 232323 — 23),
o (2.14)
a(3) _ 1024
12 3 ?
24
afd) = 1;51 (899697512 + 371865021 x5 + 858325223 + 941402523
+ 41052123 — 7902225 4 1925 + 28502 25 4+ 60023 x023 — 502523),
4
o) = xl =21 (309528 + 591atey + 932222 — 323).

(¢) The third case:
The matrix entries of As, Az are defined as follows.
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af? = —5gl—25(68831775m12 — 46039502125 + 68409252522 + 5580602823
— 60535z x5 — 302225 + 9128 + 195002123 — 450022 x013),

a;? = ?5 (4528 + 5alxy + 152322 — x3),
aﬁ) = 1(13? (922 — 25) (31527 + 6223wy — 22),
ag) — 30z, (2.15)
afd) = —%(3633052533 + 1610235021025 — 6178252522

+ 5358602823 + 50795z x5 — 47702325

+ 12125 4 73502123 + 260022 z023 — 150x223),
a$d = 49”1 7 (1350F — 513ates + 3010703 + 1323).

Remark 2.1. It is not clear in general whether for a given free divisor arose from
an algebraic solution to Painlevé VI equation, there exists a system of the form (2.6)
or not. This is one of the reasons why the method explained in this section doesn’t go
well for an arbitrary algebraic solution.

2.3. CONSTRUCTION OF A 3 x 3 MATRIX

Our next target is to construct an Okubo type system in three variables from the
system of the form (2.8) by using the argument explained in [13, Appendix B].

We now treat the case where the entries of the 2 x 2 matrices Ay, A3 are defined in
(2.13). Let By, By, B3 be 2 x 2 matrices defined by the relation (2.10). As an analogue
of (2.16) in [13, Appendix B], we construct an integrable Pfaffian system of rank 2 by
using B, (j =1,2,3)

3
_ ) g :
A (z_; r dxl) Z (2.16)

which satisfies the following conditions:

(E1) T® (i = 1,2,3) are 2 x 2 matrices whose entries are rational functions of

Z1,T2,T3.
(E2) There are 2 x 2 matrices Fy) such that the matrices T (i = 1,2,3) take the
forms
r
:Z—J , 1=1,2,3,
Tr3 — Zj(.%‘l, 1‘2)

j=1

and that each entry of ng) is a function of 1, x5 and independent of x3. (As was
explained before in this section, z1, 22, 23 are defined by fo = Hle(xg —zi).)
(E3) rank ') =1 (j = 1,2,3).
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(E4) Too = — Z?:1 Fg_s) is a diagonal matrix whose entries are constants.
For this purpose, we define
10
= (so 1)
and put
Oz,
B, = (PyB; + 85, Py) Py " — 82(fff‘))12 (i=1,2),
0
By = (RoBy + 0 PPy — (2 4 20 lo)y
T3 Jo

where ¢ is a polynomial of z1,z9, 23 and s1, so are constants and all of ¢, s1, s9 are
to be determined. Moreover we put

Gi,j = lim ((Eg - Z])Bl/

T3—Z2j

Then ¢ is so chosen that

3
/ Gi,j ,
BZ,ZE (i=1,2,3)

xr3 — 25
j=173 7%

hold. In this case, by direct computation, we find that ¢ = —3221(727 + 32).

Since G3; is a 2 x 2 matrix, det(Gs ;) = 0 means that the rank of G3; is 1.
We assume that fy = 0 has no multiple root as a cubic equation with respect to z3.
On the one hand, det(G3,1) = 0 implies that

(24 + 250 — 600s1)(234 + 25qo — 600s1) = 0

and as a consequence, we take s; as one of

25q0 + 24 25qo + 234
S1 = y .

600 600
On the other hand, det(Gs ;) =0 (j = 2,3) imply that

(33 4 25go — 600s2)(63 + 25g9 — 600s2) = 0

and s, is one of

_ 25q0 + 33 25qp + 63
- 600 600
In this manner, s1, sy are determined. We treat the case

82

25q0 + 24 25qo + 63
S1=————, Sg = ———.
600 600
Then we put _
F(l) = B£|81=25q0+24 . __25qp+63 (Z = 1, 2, 3)

600 1°2 600
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and write them of the form

o_s 0
r=\"_"4 =123,
Z%—Zj(l‘) '

j=1
Therefore, the conditions (E1)-(E4) hold for T (i = 1,2, 3). Next we define

Too =~ + T8 +TY).

In this case I'oe = diag[}, —3].
The computation beginning from now on is complicated. We are going to accom-

3)

plish the computation step by step. Since the rank of I‘; is 1, there exist vectors

l_;j = (b1, b25), & = (aj1,a52) (j = 1,2,3) satisfying the equations
' = bt T (j=1,2,3) (2.17)
j ] j1 oo J )4y 9)- .

Note that if a;; is given, a2, b1, ba; are determined uniquely. Then, as is explained
in [13, Appendix B], it follows that

ail a2
bi1r b2 bis -7
b b b az; a2 | = 1g.
21 22 23
azy as2

Let (bs1,b32,bs3), (a13, azs,ass) are vectors satisfying

bi1 bz bis a11 ai2 ais
bar  bag  bos az1 az azz | =Is.
b31 bz b33 as1 azz ass

This shows that if ay3 is given, ao3, ass, b31, b31, b3z are determined uniquely. As a result,
we have still undetermined constants ai1, asi, a3, a13 and the remaining constants are
done. The 3 x 3 matrix which we need is the one given by

3 1 blj
So = Z P boj | (a1 ajo aj3).
=1 bs;

An Okubo type system is defined by using Sp.
To find a potential vector field, we need S = Sy ! which plays the role of the matrix
T in the introduction. Concretely we find that

3 blj
S= (r3—2) by | (e a2 az).

j=1 bs;
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Let Sij be the (7, j)-entry of S. Then concrete forms of S;; are as follows:

S = (78875x1 700x8 2y — 7502 2 + 420225 — 212 + 2523),

25
S12 = %(—51‘% + x2),
S — _4a31(5$% — 12)(55x + 102229 — 23) (52529 + 112527 w5 + 152323 — 23)
25a11 (10527 — 10222 + 22) ’
So1 = —7(339968751‘ + 70437521% x5 — 8388625x1%x3

625
+ 10228752523 — 617752523 — 120752 x5 + 13652225 — 3927),

1
Sao = 5*(45125x1 2500255 — 850z 23 + 2202223 — 1125 + 50x3),

Saz = —dasy (522 — x2)(552] + 102229 — 22)(12980625212 — 15007502102,
+ 3423752522 + 2207002823 — 182252 x5 4+ 11702725 — 3925)
/625a11 (10527 — 102229 + 23),

S31 = —a11 (10527 — 1023z + 23) (89375210 — 937525 o + 517502523
— 750z s + 753y — 3x5)/{50a31 (523 — xo)(5527 + 102329 — 23)},

a11(32521 + 3023wy — 323) (10521 — 102325 + 23)

S3a = —
32 16a31 (5a? — x2) (5527 + 102222 — 3)

)

1
S33 = = — (13462525 + 219002825 + 3350223 + 9402223 — 473 + 50x3).
It is noted here that rational functions S;; depend only on the ratio az;/aq1. To simplify
the computation, we introduce the function ) = ¥ (x1, x2) by the relation

1052} — 102329 + 23
(522 — x2)(55x + 102229 — 23)’

az1 = a1y
Then

4
Si3 = ——¢(525:c§" + 11252129 + 150705 — 23),

4
Soz = —6251/)(1298062593 — 15007502125 + 3423752822 + 220700253

— 18225zt 2; + 11702225 — 3925),
(89375219 — 937528 x5 + 517502823 — 750z a3 + Thaixs — 3x3)
507 ’

S31=—

(32521 + 30232y — 323)
164 '

We continue the computation. Define

Ss2 = —

g:

o O =
= o O
o = O
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and a matrix S’ = g(S%)g. Let E = §(210,, + 2220y, + 8230,,) be an Euler operator
and assume that each matrix entries of S’ is weighted homogeneous with respect to E.
That is, if S}, is the (4, j)-entry of S, then ES;; = % - §}; for some non-zero constant
7vij- It follows from the definition that 11 = Y2 =133 =1, 31 =4, 113 = % and that
Y(x1,x2) is also weighted homogeneous.

Moreover we introduce a 3 x 3 matrix S” = (S}}) such that S}, = ~,;;S};. This
implies that £S” = S’. Then the extended WDVV equation in this case is

02,5 ,0,,5"] = O. (2.18)

We are going to solve (2.18), or equivalently, to determine the constants 7;; and
the function ¢(x1,z2) by (2.18). Then we obtain
_ _16 _ _8 _5
Vo1 = T3y V23 = 5y V32 = 5, (2.19)
azﬂﬁ = 812¢ = O

The latter implies that v is a constant. Then from the definition of Sy3, S23, S31, S32,
we find that

4 2 4
Y21 = 3 Y23 = 3 Y12 = 5 V32 =2,
which implies a solution to (2.18). Let C' be the matrix obtained from S”, by the
substitution v9; = %, Yoz = %, Y12 = %, Y32 = 2 and v is a constant. As a result,

we find that 4 4
Ci1 = 8511, Ci2= 3531, Ciz3 = ?521,

4 2
Co = 3513, Cog = S33, Cog = 55237

C31 = 48512, C3p = 2833, (33 = Saa.

2.4. A FLAT COORDINATE AND A POTENTIAL VECTOR FIELD
CORRESPONDING TO C

Put
y1 = Cy1 = 2(z — 5a3),
Yo = Cgy = —4(325x7 + 302225 — 323), (2.20)
1
y3 = C33 = %(4512595? — 25002525 — 850122 + 2202223 — 113 + 50x3),
where we take ¢ = 3—12 Then y = (y1,y2,y3) is a flat coordinate in this case
and d(y1) =3, d(y2) = 1%, d(ys) = 1. There is a relation among yi,y2,1;

3y? — yo — 1600xF = 0. For this reason, we put z = 4027 and regard z as an algebraic
function of y;,yo defined by
3yf —ys — 2% =0. (2.21)

It follows from the definition that each matrix entry of C' is a polynomial of y, z, y3
or an algebraic function of y1,y2,ys and that d,, C, 9,,C, 9,,C commute each other
and in particular, 9,,C = Is.
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We are going to determine a potential vector field (hq, ho, h3), where

h1 = y1y3 + h§°),

ha = yays + hY, (2.22)
1
hs = §y§ + .

We may assume that each h§0) is a function of y;, z. The definition of a potential
vector field shows
Oy h1 Oy, ha 0Oy hs
Oyoh1 Oyyhe  Oy,hs | =C. (2.23)
ayshl ayshQ ay3h3

Since d(hy) = 2, it follows that

5 1 1
Zhl = Z(ylayl + 2y20y, + 4y30,,)h1 = 1(1/1011 + 2y2C1 + 4y3C31),

which implies that

1 8
hi = 3(1/1511 + §y2513 + 4y5(4512)).

As a consequence, we have

27 5 3,2 4 5
hi=yrys — oL IR B
4000 1200 ' 800 3750

The determination of hs, hs is accomplished by an argument similar to the case h;
and the result is as follows:

37y8  9yiz? _ 3y2 24 _ 4y, 2° _ 28

1000 200 200 625 1000’

ha = ya2y3 —

L 7y7§+ 897y¢  13yf2® 3yl yi2° Ty? 20 Y127 N 1328
57 79 4480000 160000 320000 187500 800000 = 437500 48000000

2.5. OKUBO TYPE SYSTEM OF DIFFERENTIAL EQUATIONS
ASSOCIATED TO THE ALGEBRAIC SOLUTION

We are going to construct an Okubo type system from now on starting from the
potential vector field (h1, ha, hs) determined in subsection 2.4. The matrix C is defined
by (2.23). We put

1
E= Z(ylayl + 23/26?42 + 4y38y3)
and define T'= EC. Moreover, we put

2dy —dy —d —dy +2dy — d —dy —do +2d
B® — diag |- + 1 32 5 4 1+32 R 32+ 31
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where dy = 1, dy = L1, d3 = 1. Then Bg) =diag [-r — i, —r — =%, —r + 2] in this
1 2 3 2 12

case. On the other hand we define
BY =9, C (i=1,2,3).

Then as is remarked before, we find that B® (i = 1,2,3) commute each other and
B®) = I5. Using these matrix we define a system of differential equations for Y:

3
T(dY) = — ( 3 B(i)dyi) BOY.
i=1
This system is called an Okubo type system of differential equations.

2.6. ALGEBRAIC SOLUTION OBTAINED FROM T
By direct computation, det(7") coincides with

f1 = (55y+ + 4000y3 — 10y22% — 2%)
x(38025yF — 1560000y ys + 16000000y — 35100y 2>
+ 720000y 2y32% — 1560043 23 + 320000y, 52> + 4590y 2%
+ 72000y32% 4 2080y3 25 — 620y72° — 240y, 27 + 2°)
up to a non-zero constant factor. Introducing an algebraic function g, defined, by the

equation
qg — 204,z — 522 =0,

we find that solutions of f; = 0 as a cubic equation of y3 are p1, p2, ps defined by

p1 = (=55y; + 10722 + 2%) /4000,
p2 = (195y] — 90y22% — 40y, 2% — 92 — 4qu2%(4y, + 2))/4000,
p3 = (195y] — 90y7 22 — 40y, 2% — 92* + 4go2” (4y; + 2))/4000.
Define
det(T)(T" )31

P31 =
T51

y3=0

and
pP3s —p1 P31 —P1
=, w3 =—"——.

) 3,
P2 —n b2 —p1
Then ¢, w3, are functions of yi, 2. By the relation ¢3 — 20y;2 — 522 = 0, they are also
regarded as functions of ¢2, z and

t

(g2 — 32)%(g2 +52) (45 + 2g22 + 52%)?

(g2 — 52)(q2 + 32)3(¢3 — 2q2z + 522)2’

wsg = (—g2 +32) (g2 +52) (43 +32°)(¢3 + 222 + 522).
’ (g2 +32)%(—a3 +52%)(g5 — 2q22 + 522)

t=

(2.24)
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At last putting go = —zs, we conclude that

(=5 +8)(3+ )35 —2s + s%)? (=5 +8)(3+3)(3+ ) (5— 25+ s?)

t: =
(—3+5)3(5+85)(5+2s+s2)2 31 (=3 + 5)2(=5+ s2)(5 + 25 + 52)

It will be shown in §4.11 that (¢,ws 1) is an algebraic solution to Painlevé VI equation
which is equivalent to (2.1).

3. PREPOTENTIALS CORRESPONDING TO ALGEBRAIC SOLUTIONS
OBTAINED BY DUBROVIN AND MAZZOCCO

Since we discussed in [14] algebraic solutions to Painlevé VI equation constructed by
Dubrovin and Mazzocco [7], we only give prepotentials corresponding to such solutions.

Icosahedral solution (Hs)
In this case,

d(y1) = %» d(y2) =

and there is a prepotential defined by

5 d(y3) =

ot w

poY2ys Tty | vit o uivs | bivs
2 3060 20 6 °

This prepotential is obtained by Dubrovin [6].

Great icosahedral solution (Hj3)'
Let (y1,y2,ys) be a flat coordinate and their weights are given by

3 4

d(y1) = <, d(y2) = 5

5 d(ys) = 1.

We introduce an algebraic function z of y1,y2 defined by the relation
Y2+ 1z +2=0.

It is clear from the definition that d(z) = % In this case, we consider the algebraic
function of (y1,ye,ys) defined by

r_ y3ys +ys  yiz Tyizt B 17y22" _ 2y 210 64213

2 18 72 105 9 585
It is provable that F' is a solution of a WDVV equation. Indeed, we first define
Oy Oy I Oy Oy, F 851 F

C=|08,0,F 02F 0,0,F
853 F 8113 8@/2 F ay:s a?h F

Then 9,,C (i = 1,2,3) commute each other. This condition is equivalent to that F' is
a solution to a WDVV equation.
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Great dodecahedron solution (Hs)”
Let (y1,y2,y3) be a flat coordinate and their weights are given by

d(y1) = 3, d(y2) = %’ d(ys) = 1.

1

3 )

We introduce an algebraic function z of y1,ys defined by the relation
—y%+y2+22 = 0.

It is clear from the definition that d(z) = 1. In this case, we consider the algebraic
function of (y1,ye,ys) defined by

P y3ys +11ys . 4063y 19y722 _ T3yizt 11y25 1627

2 1701 135 27 9 35

Then F is also a solution to a WDVV equation.

4. POTENTIAL VECTOR FIELDS CORRESPONDING
TO ALGEBRAIC SOLUTIONS TO PAINLEVE VI EQUATION

It is interesting to construct potential vector fields corresponding to all the algebraic
solutions to Painlevé VI equation. The purpose of this section is to report on the
determination of potential vector fields corresponding to some of algebraic solutions.
Before showing the results, we prepare some notation. Let (y1,y2,y3) be a coordinate
system with weights d(y1), d(y2), d(ys). For simplicity we put d; = d(y;) (j = 1,2, 3).
We always assume that 0 < d; < dy < d3 = 1. If z is an algebraic function of y,ys
defined by the algebraic equation ¢(y1,y2,2) = 0, where p(u1, ug, us) is a weighted
homogeneous polynomial, then d(z) is the weight of z determined by the equation.
Below we define h;(y1,y2,y3) (j = 1,2,3) are polynomials (or algebraic functions)
and P = (hy, ha, h3) is a potential vector field. Let E = 2?21 d;jy;0y, be an Euler
Oy, P
vector field. The matrices C, T' is defined by C = | 0, P |, T = EC. It is clear
Oy, P
that 0,,C = I3 and the condition that P is a potential vector field implies that
(04, C)(0y,C) = (0y,C)(0y, C). The diagonal matrix BY) is defined by

Bég):diag —T+2d1_d2_d3,—’r—|—_d1+2d2_d3,—’r—|—_d1—d2+2d3 ’

3 3 3
(4.1)

where r € C.
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We define
h(yla Y2, y3) = det(T) (42)

From the definition, A is a cubic polynomial of y3. Then h = szzl(yg —pi(y1,92)),
where p; = p;(y1,y2) (j = 1,2,3) are roots of h = 0. It is shown by Sabbah [23] that
h = 0 is a free divisor in a three dimensional space. We define B®) = —7-1B).
Assume that r is generic. Then it follows that if ¢ # j, the (4, j)-entry of hB®) is
a linear function of ys, that is, it takes of the form k;;(y1, y2)(ys — pij (¥1,y2)), where
kij, ps; are functions of y1,y2. By an easy computation, we have

h-(T71),;
Doy = % (4.3)
v y3=0
We introduce ¢ and w;; by
t:p?)—pl w“_pij_pl (4.4)

p2—p1’ ”_pQ*pf
Then w = w;; is an algebraic solution to Painlevé VI equation (1.1) with the variable .
Note that (1.1) has the parameter § = (6,0y,6.,0). Béicklund transformations
map solutions of a given Painlevé VI equation to solutions of the same equation
with differential parameter ¢/ = (6,,0!,0.,0..). The list of fundamental Bécklund

yr Yz
transformations for Painlevé VI equation is given in Table 1 (cf. [22], see also [20]):

Table 1.
[ T 6 [ 6 [ 0 | 0= ] w [ ¢t |
Sz _996 e'y 92 900 w t
Sy 0, —0, 0. 0o w t
Sz 9:1: ey —62 900 w t
Soo 0, 0y 0. 2 — 0 w t
S5 Op—0 | 0y—0 | 0,—0 | 0o —6 w+4d/p t
e || 0o — 1 0, 0, 0, +1 t/w t
Ty 6. O — 1 0, Oy, +1 || (w—1t)/(w—1) t
T, 6, 0. Oo—1] 0. +1 ||tlw—=1)/(w—1)| t
Py 0y 0. 0, 0o 1—w 1—1t
P,. 0, 0, 0y 0o w/t 1/t
1 — L[ _te=Dw' (6, | Oy | 641
Here § = 2(9Jf + 03/ +0. + 900) and p=3 w(w—1)(w—t) w + w—1 + w—t

We moreover need Backlund transformations defined by combinations of those defined
above:
ty = sxs(;(syszsoos(s)z, ty = syslg(sxszsoos(;)z,
t, = 8285(818y80085)2, too = sm55(smsyszs(g)2.
In this section, an algebraic solution LTn means “solution n” in Lisovyy-Tykhyy
[20, pp. 156-162].
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4.1. SOLUTION 20 OBTAINED BY P. BOALCH [3] (LT1)

In this case,

d(y1) = —

1
157 (y2> 5’ (yg) ?

1
hy = ﬁyl(g)y}?m +130ySy3 — 35145 + 13ys),

1
hy = 1702(5:(}%8 — 255y}2y§ - 3825yfy§ + 459y§ + 102y2y3),
1
hy = = (1051° + 1450y7"y3 — 8700y;"y; + 23490051y}
+ 587250y%y5 + 2349050 + 2942),
16 P 26
Bg) =diag |—r — 157—7“— §7—7"+ 150

h = (10y1°y2 — 100y5ys — 54y5 — ys)
x (y1® — 5y1?yo + 30yTy3 + 90ySys + 225y Y5 + 27y5 — y3)
x (y1° + 5y1°y2 + 30yiy3 — 90ySys + 2257 Y5 — 27y3 + ys3).

It is easy to show that h = (y3 — p1)(ys — p2)(ys — p3), where

p1 = 10y12ys — 100ySys — 5443,
p2 = 10y12ys — 100y5y5 — 5495 + (=45 + y2)3(¥5 + 9ya)?,
p3 = 10y1%y2 — 100553 — 545 + (43 + y2) (—yi + 9y2)°.

The algebraic solution (¢, ws 1) has the parameter 6 = (%, %, %, %) and is uniformized
by
(14 5)3(9 —s)? 414 5)(9—s)

= A= rs? T Tors—s2

3
where s = z—; To construct an algebraic solution equivalent to Solution 1, it is better
to treat another algebraic solution

(p2—p1 p32—p1) _ [((1—95)309+s)?% (1—s5)(9+s)(3+s?)
(ta’wa)_(PB—Pl’ PB—P1>_<(1+8)3(9—8)2’ 39— s)(1+5)? )

Then the substitution s = ,:i? shows (tq, fuaitf) coincides with the solution 20
obtained by P. Boalch.

4.2. SOLUTION BY KITAEV [16, (3.4)] (LT2)
In this case,

dln) = 2. dlap) = 3, dly) = 1,
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1
— (y§ + 30y7y5 + 20y;5 + 60y1y3),

h =
T 60
1
hy = %y2(3y1 +10y7y2 + 10915 + 20y3),
hy = o (11 + 60y1y3 + 120913 + 180yTys + 24953 + 24043),
. 1 2 7
Béi) = diag |—r — 3" 175’77,+175
h=—— ——(y7 + 10 20ys)
= 73000 Y1 191292 Y3

x(9y1° + 60yTys — 220yTy5 — 600y Y3 — 60y7ys — 25615
+120y5y3 4+ 400y3y2y3 + 1200y1y3ys + 400y3).

Introduce an algebraic function ga of y1, 92 by the relation y» = (=5y% + ¢2)/4. Then
h = (y3 — p1)(ys — p2)(ys — p3), where

1
P = (133y1 - 50y1Q2 + 5y1‘]2)

160
P2 = 1(150 (133y} — 50yiq5 + Sy1ds) — 431 + 42)° (2u1 — @2)°},
ps = o= (13397 — 505743 + 5y1as) — 431 — 02)" (20 + 7).
The algebraic solution (¢, ws 2) has the parameter 6 = (%, %, %, %) and is uniformized
" . (2+5)?(3—s) 32+ 5)(3—5)

2— 52313 BT T Bre22_s)

where s = ,‘Z—f. To construct an algebraic solution equivalent to the solution obtained
by Kitaev, it is better to treat another algebraic solution

_(P3—P2 P32—P2\ [ 25%(5 — s%) _ s?(1+s)
(ta’wa)_<P1—P2’ p1—p2)_< (2-5)?@B+s)* (2—8)(3+8)2>'

Then ({4, fu";:tf) coincides with the solution obtained by A. Kitaev [16, p. 195, (3.4)].

Remark 4.1. The potential vector field (hy, ha, h3) is already given in [12, §7.1] and
as was mentioned there the polynomial & is related with Fq3-singularity in the sense
of Arnol’d.

4.3. SOLUTION 4.1.1A BY ANDREEV AND KITAEV [1, P.162] (LT3)

In this case, z is an algebraic function of y1,ys defined by the relation

y2 — 2(yi + 2°) = 0.

1

PR d(y?)) =1, d(Z) = G

) d(yQ) = 2

| =

d(y1) =
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1
hi = — (105y1y3 — 210y 2 — 701 2% + 378y22° + 27027),

105
1
ha =5 — (59 + 5yays + 2097 22 + 307 2% — 12¢3 28 — 27y, 2%),
hs = = o( 4800y1? + 275y2 + 35200y1°2% + 88000y 2* + 98560y 26
+ 73920y 2% + 2393612210 — 35202'2),
1 4
BY) = diag —r—1—8,—r—1—8,—r+§

It is easy to show that A = (y3 — p1)(ys — p2)(ys — p3), where

16
p1 = —E(15y1z—|—20y 25 4+ 9y 2°),

4
P2 = = (10972 + 20y72° + 182" + 5v/=3(y1 — 2)° (1 + 2) (v + 7)),

i )
p3 = g(lOny + 2095 2° + 18y12° — 5v/=3(y1 — 2)(y1 + 2)° (45 + 2%)).

The algebraic solution (t,ws 2) has the parameter 6 = (%, é, é, %) and is uniformized
by

t_,(_3+5)3(1+3)3 s — 3(=3+s)(1+s)?
T (—1493B+s)3 P s(—1+9)B+9)2
t 5(—345)2(1+s)

we conclude that (¢,t/ws 2) coincides with tetrahedral

Since w53 = T 3(=17s)2(31s)’

solution 6 of [4] which is equivalent to the solution 4.1.1.A obtained by Andreev and
Kitaev [1] (cf. [20]).

4.4. OCTAHEDRAL SOLUTION 7 BY BOALCH [4] (LT4)

In this case, z is an algebraic function of y;,ys defined by

Yy — Y2 — 72" = )
1 1
d(y1) = 57, dly2) = 3, dlys) = 1, d(2) = 5,

103 1 2 16 8.2 4 3 4
h, = m —|—y1y3 — myw (45y;° — 255y7 2" + 816y 2" — 4252%),
ho— — 164y2* — 1242y16,2
27 T7130Y 2530 (1645} i

+ 2944y12 23 — 303615 2* + 1612°),
5847 g 1, L 32,2 28 3 24,4
_ 0ot Sy - 220162420 — 435 ~ 1920 — 2404

3= Todaiiso?t T 2% ~ arvasg? (L6 2 Y12 ¢

+ 17664y2°25 — 24771y1%25 + 20608y122"
— 136625 2% — 253210).
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5 3 13
BY) =diag |—r — =, —r— 2, —r 4 =
o 1ag r 1 r 3 r—+ 3

It is straightforward to show that
h = (ys — p1)(y3 — p2)(ys — p3),
where
p1 = (—47y +207y1%22 — 69y52* — 1104y72° — 11525) /3795,
po = (45921 — 345y182% + 2576y1% 23 — 3657y5 2 + 2208y]2° — 11525) /3795,
= (45y3* — 34591522 — 368y1223 + 759y5 2 + 2532°)/3795.
The algebraic solution (¢,ws 2) corresponding to
pao = (45932 + 260y3* 22 + 2668y3° 2% — 8694y102*
+ 5244y122° + 1288y52% — 7728y 12" + 8052%)/3795(y} — 727)

is uniformized by

o (-143uw)?(2 4 3u)! S 2(—1+ 3u)(2 + 3u)(4 — 6u + 63u?)
T+ 6u)(4 —12u+27u)?’ 7T (4 —12u+ 27u?)(—4 + 63u?)
where u = =% . Substituting u = — 2((1;2)’ we find that P, Py, P, transforms (¢, ws o)

to octahedral solution 7 obtained by Boalch [4].

4.5. SOLUTION BY KITAEV [16, P.191] (LT5)

1 1
d(y1) = Ik d(y2) = 3 d(ys) =1,

1
hy = —uy1 (40y12 + 858y y2 — T15y3 + T8ys3),

78
_ i _ 8 4,2 3
hy = 123/2(128?! 528y1y2 + 528y1y; — 11y; + 12y3),
hs = o 4(2048y + 97152y1 593 — 259072y1%ys + 40075245y
— 133584y1y5 + 2783ys + 92y3),
7 5 19
B® — di e a2
S T E A T

Introduce an algebraic function ga of y1,y2 by the relation y» = yf — 3¢3. Then
h = (y3 — p1)(ys — p2)(ys — p3), where

9
1= 5Ty = 33y1d5 + 33yiq; + 33453),
9
p2 = 5 (Tyr” = 33yiq; + 33y1dz + 33¢3) — 99(vi + 202) (47 — @2)",

9
p3 = 5(7yi2 — 33yYq3 + 33y a5 + 33¢5) — 99(y7 — 2¢2) (yi + @2) ™.
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The algebraic solution (£, w3 1) has the parameter 6 = (—-%,0,0, ) and is uniformized

122 712
by
 (1425)2(1—9)* ~ (1-55%)(142s)(1—s)
T -2+ T T d—25)(1+s)3

where s = %. It is straightforward to show that
1
P, .825y8:50086TySyPuyssss = (1/4,1/4,1/3,1/3).

By the Bécklund transformation corresponding to P,.5,5y5:S00 567y SyPrySsSz, the so-
lution (¢, ws, 1) turns out to be the solution obtained by A. Kitaev [16, p.191] (cf. [20])
up to a coordinate change.

4.6. SOLUTION 23 OBTAINED BY P. BOALCH [3] (LT6)

In lhiS Case,
d y1 - ) d y2 - ) d y3 - 1

hi = y1ys — (4983733 + 846858y72y, + 3484524y11y2 + 1093184y3)/(12276y3),
ho = yoys — (193401y + 2414900y1 Yo — 399504y1 y2
— 40121616y} y3 — 2891648y3) /(6494413),

1
hz = §y§ + (88496737y%0 + 2058469880y, y» + 16782651480y;%y5
+ 387039150407 y5 + 69160946960y ®y5 — 96297379584y3y5) /81774,

13 1 8
B® — di e 2= °
o 1ag | —r 30° T 30" r+5
Introduce an algebraic function z of ¥, y2 by the relation
1 12
Yo — Exl + 5 322 =0. (4.5)

Then h = (y3 — p1)(ys — p2)(ys — p3), where
p1 = 7 (32905543682° + 1036867392002y}
— 4585561200002y, % + 337703815625y3+) /889440750,
P2 = y30(32905543682° — 31420224002y}
+ 69478200002%y12 — 3522990625y2°) /71874000,
p3=y1°( — 32905543682° — 31420224002y
+ 69478200002y % — 3522990625y3°) /71874000.

The algebraic solution (t,ws 1) has the parameter § = (f%, 3—70, %, 3—(1)) and is uni-
formized by
(4+5)%(1 —8)3(5 — s) @+ -=90b-13)

L+ —s)



Flat structure and potential vector fields related with algebraic solutions. . . 225

5?/1

where s = — . It is straightforward to show that

ny56(5x5y5z56)4rx9 = (2/57 1/57 2/57 2/3>

By direct computation, we find that Py, ss(s,8,5.85)%r, transforms the solution
(t,ws,1) to solution 23 obtained by P. Boalch [3].

Remark 4.2. In spite that in this case, since hy, hy are rational functions of yq,
(h1, ha, h3) is not a polynomial potential vector field, these two are polynomials of
Y1, %, Y3, where z is the function defined by (4.5). In this sense, (h1, ho, h3) is regarded
as an algebraic potential vector field.

4.7. SOLUTION 22 OBTAINED BY P. BOALCH [3] (LT7)

In this case, z is an algebraic function of y,ys defined by the relation

Y42 +2° =0.

Wl =

) = 5. dya) = 5, dls) =1, d(z) =

hi = y1(26y3° — 57y;102° + 6y32” — 1927210 4 162°)/(627),

hy = (—7y?° + 1322y1°2° — 4210210 4 14yy32'2 + 6725 21° + 1682%0) /(14212),

ha = (91930 — 19704y352° + 112740930210 + 252320y,° 215 + 15y22"® 4 360240y, ° 2%
+ 72965 2% +12162°0) /(302'%).

1 1 1

B® —diag | —r — = —p — = —p+ =

o 1ag | —r 3 T % T+ 5
Introduce an algebraic function go of y2, 2z defined by the relation 3ys — 2¢3 + 522 = 0.
Then 3y? + 2¢32% — 22° = 0 is the relation among ¥, 2, 2. As a consequence, we find

that h = (y3 — p1)(y3 — p2)(y3 — p3), where

p1 = —2(28¢5 + 1005¢5 2% — 5550q32* + 462525) /81,
p2 = —2(28¢5 + 1005¢5 2% — 5550q2 2" + 462525) /81

10
+gp (et 2)(e+ 52)%(—4qz + 52)?,

p3 = —2(28¢5 + 1005¢3 22 — 5550¢22* 4 46252%) /81

10
81( g2+ 2)(—q2 + 52)%(4qz + 52)%

The algebraic solution (¢, ws 1) has the parameter § = (% 3—10, %,

5) and the curve
{(t,ws 1)} is uniformized by

(=54 8)(=1+ s)*(4 + s)? wyg — (=14 s)(44 s)(—13 + s?)

b= (—4+35)2(1+s)305+s)’ ' (—4+5)(1+5)2(5+s) ’
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where z = $¢2/5. In this case,
Pry825y5:tooSsSootoosst o 86720 = (1/5,2/5,1/5,1/3).
On the other hand, the algebraic solution to Painlevé VI equation

P2 —pP1 P32 —DP1
(taawa) = ( ) )
P33 —P1 P3—P1

- ( (—4+8)%(1+35)3(5+s) (—4+s)(1+s)(5+s)(2+52)>
T\ G i@ T 97 (“1+ )2+ 5)(—10 + 57)

has the parameter ' = (3/5,1/5,1/5,2/3) and

PoytorsSsSyS:SocTusassratl = (1/5,2/5,1/5,1/3).

By direct computation, we find that Ppy,t,7:555y5:500T2525s7, transforms (ta,wq) to
solution 22 obtained by P. Boalch [3] up to a coordinate change.

4.8. KLEIN SOLUTION OF P. BOALCH [2] (LT8)

In this case,
2 3
dy1) = 5, d(y2) = 7 d(ys) =1,
= (- 2ylyz + 5 + 12y1y3) /12,
= (2y; + 5y1y2 + 10y2y3)/10,
= (=8yi + 21y1y5 + Tyrys + 28y3) /56.
2 1 3
B® — di e .- b
po iag [—r 7,r 7 7"+7
Putting
27, 2
Y1 = —T(?Wl + 4uy),

1
Yo = Wul(ul — 2’LL2)(U1 + 2UQ),
we find that h = (y3 — p1)(ys — p2)(y3 — p3), where
p1 = (1/224)u1 (267ub + 700u u3 + 784utus + 1344us),
pa = (1/224)( — 165u] — 308uSu3 — 1568ufus — 112usus
— 1792u3u3 — 448uju§ — 512ul),
p3 = (1/224)( — 165u] — 308uSu3 4+ 1568ufu3 — 112usus
+ 1792u?ul — 448uyu§ + 512ul).
b2 —P3 P32 —P3
p1—p3 p1—p3
(t,ws,1). Then by the substitution u; = Zus(1 — 2s), we find that (t,,w,) coincides
with Klein solution of [2].

In this case we take (tq,wq) = ( ) instead of the algebraic solution
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Remark 4.3. The polynomial i defined above is regarded as the discriminant of the
complex reflection group ST24 in the sense of Shephard-Todd [30]. We already con-
structed another potential vector field which also implies Klein solution. For the details,
see [12, §7.3].

4.9. SOLUTION OBTAINED BY KITAEV [16, P.192] (LT9)

In this case, z is an algebraic function of y1,ys defined by the relation

Yi+y—22=0

do) =7 d) =5, d) =1, dE) =g,

1
hq 17),(—93;,{’ + 16y1y3 + 703 2% — 1591 2% + 162°),

1 =4
hy = Z(25;/? + dyoys + 55y t22 — 30y22* + 40y, 2° — 102°),

1
hy = ——(502125y% + 896y2 — 318500y° 2% 4 57750y} 2*

1792
+ 5600043 2° + 65100y72° — 33600y, 2" + 75252°),
1 1 1
Bg) = diag T ﬁ,frJrﬁ .

2(—2+ s+ sy

o952 0 " find that h = (y3 — p1)(y3 — p2)(y3 — p3), where

Putting z =

135y} (—304 — 64s + 60852 — 3253 — 680s* + 165° + 2485% + 857 + 55°)
16(—2 — 25 + 52)4
~ 135y1(80 — 645 — 5445 — 325® 4 4725* + 165° — 1365° 4 857 + 55%)
b2 16(—2 — 25 + s2)° ’
135y1(—80 + 645 — 99252 + 325 + 680s* — 165° — 1525° — 857 + 19s%)
a 16(—2 — 25 + s2)*

D1

)

p3 =

The algebraic solution (¢, ws 2) has the parameter § = (%, %, %, %) and is uniformized
by
(=24 52)(2 + s2)3 B (24 s%)2(2+ 2s + s%)

TI6(-1 153143 T A1+ s) (1t s)2(—2+4s1+s2)
This is the solution obtained by A.V. Kitaev [16, p. 192, lines 19-20] by s — —s.

4.10. OCTAHEDRAL SOLUTION 9 BY P. BOALCH [4] (LT10)

In this case,
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1 1 1 2 7
By = — 25 4 19 L1392 473 (4
1 55291 + 193/1 Y2 + 291 Ya 3?/192 49192 + 1193,
2 1 1
hy = —myi’o - 7331?4112 — dy1*ys + 8ytys + gyi’ + Yoy,
531 6 12 122 395
e — — a8 Y 49 12 36 9 | 124 39 3 9ID 94 4
37 Tgoapat T gzt V2T ogUia t oa it e i Y
11 1
— 24y1%y5 + 164y1°yS — 88yfys + §y§ + 51/?,7
7 13 A1
BY®) =diag |—r — —,—r — —, —r+ —| .
el T L

Introduce an algebraic function g of 41,92 by the relation 8ys + 3¢ + 15¢2 = 0. Then
we find that h = (ys — p1)(ys — p2)(y3 — p3), where

1
p1 (—34y2* + 552y 8y, + 1104y 292 + 4048593 — 759y2),

~ 276
p2= %{3911?4 — 552y ys + 276y y5
— 7728y s + 644ys — 345¢217 (yf — 22)° (¥ + 8y2) }
ps= %{391/?4 — 552y1 8y, + 276y12y3

— T728y}y3 + 644y; + 345a2y7 (47 — 202)* (47 + 8y2)}-
The algebraic solution (¢, ws 2) is uniformized by

‘o (14 2s+9s2)%(1 —s)? e — (1—5)(1+2s+9s%)(1 — 18s% — 15s%)
T (1—25+92)2(1+ 9 7T (1+s)3(1—2s+ 952)(1 + 1552)

t(’w;g’g — ].)

) coincides with
w32 —

Then the algebraic solution to Painlevé VI equation (t,

octahedral solution 9 obtained by P. Boalch [4] by the substitution s = 1—1:

4.11. SOLUTION 24 BY P. BOALCH [3] (LT11)

This case is treated in §2. We use the notation in §2 without any comment.
Let z be an algebraic function of y;,y> defined by the equation

3y%—y2—z2:0

which is same as (2.21). The potential vector field obtained in §2 is (hq, ha, h3), where

P G G yizt 2P
LTV T 0000 T 1200 T 800 T 3750°
by — _ 37y 9yt _ 3yt _ 4y, 2° _ 28
2TV T 9000 T T200 200 625 1000
hy = v3 897y% 13y 22 3ytzt Y320 n Ty? 20 n Y127 n 1328

2 4480000 160000 320000 ' 187500 ' 800000 ' 437500 ' 48000000
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We recall the algebraic solution (¢,ws,1) defined in (2.24). Then 6 = (5, &, 5, 3)
is the parameter corresponding to (¢,ws1). It is easy to check that

1124)

nyrz525m55(5x5y5255)40 = (5) 37 gv 5 .

By direct computation, we find that Pryrz.9250055(smzsyszs,;)4 transforms the solution
(t,ws.1) to solution 24 in [3] (cf. (2.1)).

4.12. SOLUTION 25 BY P. BOALCH [3] (LT12)

In this case,

1
d) = —, d(ys) = =, d(ys) =1
(yl) 207 (y2> 4’ (y?)) )
1 2 1
h =y vt — iyl — gylyz + 2y1y2 + Y193,
2 oy 3
hy = 5y1 +33¥ Dy — 2y1°y3 + Ty %ys — 10?]2 + Y2ys,
366 96 440 192
hy = o240 R8s, 2 a0, 2 25 3
3T 3p1Yt T T gt 2 T g
1740 2 1
+ ——yiys — 32y1°y5 + 56y1 ys + S5 + -3,
19 7 7927 5
23 11 17
B® — diag | —r — 22 —p— — _
S T AT AT

To solve the cubic equation h = 0 with respect to y3, we define ¢; = y? + 5y2 and
introduce an algebraic function go of y1,yo by the relation 5(y3 +5y2)(3y; —y2)+4¢3 = 0.
Then we find that h = (y3 — p1)(y3 — p2)(ys — ps3), where

(—184375¢% 4 167500483 — 425047 g5 + 300¢7¢5 + 1369¢5)/(24320000¢7),
=(28125¢% — 1750048 ¢3 — 22504} q5 — 12160¢3q5 — 780q2q5 — 299¢5) /(608000047 ),
=(28125¢5 — 175004842 — 22504+ q5 + 121603 q5 — 780435 — 29945)/(608000047).

The algebraic solution (¢,ws1) has the parameter § = (—1, -+, -2, 19) and is

uniformized by

‘P (5+ 25+ 52)%(3 — 5)3(5 + s) wn s (5+ 25+ s?)(15 + s2)(3 — )
T (h—25+52)2(B3+5)305-5)" ' (B-25+)3+s)206—s)
where s = . Note that (2/5,1/2,2/5,4/5) = PpyS2TzScotooSaSsScotocSyS.T40 is the

parameter of solution 25 obtained by P. Boalch [3]. By direct computation, we find that
Py SaTsScotooSz85ScotooSy S, T transforms (¢, w3 1) to the solution 25 up to a coordinate
change.
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4.13. SOLUTION 27 BY P. BOALCH [3] (LT13)

In this case,

1 1
d = — d = — d b = ]_
(yl) 157 (y?) 37 (yS) )

1

1
hy=—— — s -
1 113/1 "y 3Y1Y2 T Y1y,

5 3 1
hy = —%yl + 2y}°y§ + Zy% + y2y3,

o,

hs = vt 304297 y§—6yi°y§+15y2+ ~3,
2 .8

2 _._2

5 15 15

We introduce new variables (g1, g2, ¢3) by the relations

BY) = diag |—r —

Y = 37/30(*QQ)I/IO/(27/1551/30),

y2 = —(5/2)'/%3%q, /4,

ys = (54 — 9q1q2 + 64q3)/64
and regard h as a polynomial of g3. Moreover we define m = ¢z /¢? and m = (8573‘2#.
Then we find that h = (y3 — p1)(ys — p2)(ys — p3), where

p1=q; (8157 — 4325 4 9365* — 12805° + 7205° + 35%(—3 + 25)%(—1 4 65)u)/(2565°),
p2=q3(81s% — 4325% + 9365% — 128055 + 7205° — 352 (=3 + 25)(—1 + 65)u)/(2565°),
p3=q;(—81 + 4325 — 9365 + 1280s> — 720s)/(1285%),

p1,p2, p3 are defined by and u by the equation u? = (3 — 8s)(1 — 6s)(3 — 2s). In
91(2597 —993)

this case p31 = 1. The algebraic solution (f,w3 ) has the parameter
0= (- 15, —%7 —12—57 %) and is uniformized by
1 81 —432s+ 93652 — 1280s% + 720s* 1 9—36s+ 52s?
t=>+ , wy =g
2 2u(l — 6s)(3 — 2s)? T2 2u(3 — 2s)

In this case, it is easy to see that
S25y5:555000 = (2/5,2/5,2/5,2/3).
We now recall solution 27 obtained by P. Boalch [3]. We put

(255* + 17053 + 4252 + 85 — 2)u 1 35083 4 6352 — 65 — 2

5453 (55 + 4)2 WA= gt

+ 2 30s(2s + 1)ua

ta =

DN | =

where u% = s(8s+1)(5s+4). Then (t4,w,) is solution 27. By the change of parameter

5 — gg:ﬁ; and u — where v? = s1(8s1 + 1)(5s1 + 4), (t,wsz 1) is

transformed to (ta,wa).

_ 18v
(8s1+1)2>

Remark 4.4. The polynomial h in this case is related with the polynomial Fz ¢
introduced in [28]. See also [12, §8.1].
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4.14. SOLUTION OBTAINED BY A. KITAEV [16, P.179] (LT14)

In this case, z is an algebraic function of y;,ys defined by

y: +122° + 20 =0.
8 2 1
(1) = 17, dly2) = 3, dlys) =1, d(2) = £,
hi = —(2093y; — 897y1ys2” + 3450y7 2" + 5252%2) /(89727),
hy = (—238y5 + 85yay32"® + 1700y3 216 — 750y, 2%2) /(85217),

hs = (49y% + 2415y12'0 + 3y32"'% 4+ 795y7 2% — 3521%) /(621%),

. 1 1 4
Bc(,g) =diag |—r — A 1—5,—7“—1—1—5
We are going to obtain solutions of h = 0, regarding h as a polynomial of y3. For this
2
purpose, we put m = 532;26 and introduce s by the relation m = fw. Then

we find that h = (y3 — pll)(yg — p2)(ys — p3), where p1, pe, p3 are defined by

p1= —y5 (189 — 11885 + 30245% — 4080s>
+ 2160s* + 7(—3 + 25)2(—1 + 65)u)/(30s2°),
p2 = —y3 (189 — 11885 + 30245% — 4080s°
+ 21605 — 7(—3 + 25)%(—1 4 65)u)/(30s32°),
p3 = y5 (189 — 918s + 1764s% — 2440s> + 1440s*)/(155°27),
and u by the equation u? = (3 — 8s)(1 — 65)(3 — 2s). The algebraic solution (¢, w3 1)
corresponding to p3 1 = (—259y} — 486y?216 — 35232)/(24y;2%) has the parameter
0= (&, %, L, L) and is uniformized by

157 157 157 15

81 — 4325 + 93652 — 128053 4 720s* 1 —9+30s — 2052 + 2453
w31 = — — .
2(3 — 25)2(1 — 65)u rTR T

t—l
T2 8su

Note that
s5(528y5.55)%0 = (1/5,1/5,1/5,1/3).

In order to continue the computation, we recall the solution obtained by Kitaev
[16, p. 11]. Let t4 and ua be the rational function and the elliptic function given
in §4.13, respectively. Moreover we define

1 (8s+1)(50s% + 24s% + 95 — 2)

YBT3 2(20s% + 6052 + L)ua
Then by the substitution
4(s2 4251 + 1) B 21651 (52 — 1)

ups = —

T B2+ 1185, 4+ 5 (552 + 11851 + b)up’



232 Mitsuo Kato, Toshiyuki Mano, and Jiro Sekiguchi

where u% = s1(5s% + 118s; + 5), we find that, as functions of s1, (ta,up) is nothing
but the solution obtained by Kitaev [16, p. 179, lines 15-17] (cf. [20]).

By operating the Bécklund transformation corresponding to ss(s;sys.8s)*
on (t,ws,1), we obtain the algebraic solution (£, 1) to Painle¢ VI defined by

i1 N 720s* — 128053 + 93652 — 4325 + 81
2 2(2s —3)2(6s — 1)u ’
P N (8s — 3)(72s® — 10052 + 425 — 9)
2 2(24s% — 5252 + 425 — 9)u

where v = +./(3—8s)(1—6s)(3 —2s) as before. Then by the substitution
s = ;’Eg:ﬁ;, u = —W, we find that (£,1) turns out to be (ta,wp)|s_s,-

As a consequence, the algebraic solution (¢, ws.1) is equivalent to the solution obtained
by Kitaev [16, p. 179, lines 15-17].

4.15. SOLUTION 28 BY BOALCH [3] (LT15)

In this case, z is an algebraic function of y,ys defined by the relation
3 2 3 _
—128y7 + 3y2 — 60y7z + 1252° = 0.

1 3 1

d(yl) = 37 d(yQ) = 37 d(y3) =1, d(Z) = ga

hy = ( — 131488y$ + 90y, y3 — 74400y 2 — 36000y 2>
+ 110000y3 2% 4 9375047 2* + 168750y, 2° + 7812525) /90,
ho = ( — 743168y + 20y2y3 + 1578240y  z + 2496000y 2*
+ 472000y 2% — 5100000y 2* — 130500005 2°
— 11000000y 25 — 4687500y, 2" — 11718752%) /20,
hz = (1900883200y1° + 63y3 + 750528000y 2z — 332640000y 2% — 2294400000y 2>
4 308700000y 2* 4- 2305800000y5 2° + 2682750000y 2° + 18450000003 2"
+ 1676953125y7 2% 4 464843750y, 2° + 1054687502'%) /126,
2 2
Bg’)) =diag |—r — £ —-r+ 5l

We write y1,y2, 2 by u, g as follows:

1
Yy = 6q<_5 + 2u + UQ),

2 .
Yo = §q3(—125 + 150u + 135u? — 4u® — 27u* 4 6u® + u°),

1
z = Eq(—5 — 10u 4 u?).
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Then h = (yg — p1)(ys - pz)(y3 — p3), where

2¢° 2 3 4
pL = —ﬁ( — 15625 4+ 31250u + 625u* — 19000u” + 750w

+ 6796u° — 150u° — 760u” — 5u® + 50u° + 5ut?),

2° f
po= 1—(]5(65625 + 68750u + 9375u% — 4500003 — 4750u* + 14900u°

— 650u’ — 1800u” + 85u® + 110u” + 11u'?),

2 5
p3= —%(34375 — 68750u + 10625u? + 45000u® — 3250u*
— 14900u” — 950u® + 1800u” + 75u® — 110u° + 21u'?).

The algebraic solution (¢,ws 1) corresponding to

o5 (109375 + 37500u — 98750u? — 105500u3 + 25625u* + 41400u°
—5700u8 — 8280u" + 1025u8 4 8444 — 158u'0 — 12!l + 7412

5(=5+ 2u + u?)

P31 = —

has the parameter § = (1, 5, 15, 3) and is uniformized by
(b Fu)P (1 +w)3(5 + du+ u?)?
t 3 2y2
(14+u)3(5+u)3 (5 — 4u+ u?)?
w (=5 +u)?(—=1+u) (=5 — 2u + u?)(5 + 4u + u?)
1 (1+u)(5+ u)2(5 — 4u + u?) (=5 + 2u + u?)
Note that 1113
t2800T 2 colooSz P 9:(7a7a757)
SooT255S Sz Pry 5537 F

and the latter is the parameter for solution 28 of Boalch [3]. Then we find that
125007255500t o0 Sz Py transforms (t,ws 1) to an algebraic solution which coincides with
solution 28 of Boalch [3] up to a coordinate change.

4.16. SOLUTION 29 BY P. BOALCH [3] (LT18)

In this case,
1
d(y1) = —
(yl) 107
hy = =y (5yys — 1493 — 2y3) /2,
he = (5912 + 275y 5 — 55y5 + 33y2y3) /33,
hy = (—100y;%y2 + 2550y1 2y5 + 1275005 ys + 595y5° + 9y3) /18,

d(y2) = d(ys) = 1,

ga

1 7 17
B®) — di e = e
e I T )
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1
h = 5(—4y§"0 + 1520y34y3 — 2780y18yS + 150280y %y5 + 1036155422 — 1666y3°)

3
+ 3y (10y;" — 260y1”y5 — 13259195 — 63y3)ys + 5v3 (5yT — 292)y5 + v3-
To obtain solutions of h = 0 as a cubic equation of y3, we observe that h only depends
on y9. Noting this, we put

3
6 Ya

4(1 — s+ s2)3

=3 U=

and erase y; in h. Then we find that h = (y3 — p1)(y3 — p2)(ys — p3), where

p1= —y5(56 — 14805 + 7080s% — 190805 + 32925s* — 39138s°
+ 329255% — 1908057 + 7080s° — 1480s° + 56510) /8(1 — 5 + 52)°,
p2= —y5( — 136 + 680s — 3315s% 4 91805 — 15810s* + 181565°
— 149555 + 9000s” — 3720s% + 9205” + 565'°)(8(1 — s + %),
p3 = y5( — 56 — 920s 4 37205 — 9000s> 4 14955s* — 181565°
+ 1581055 — 9180s” + 33155% — 6805 + 1365'°)/8(1 — s + 5%)°.

The algebraic solution (¢,ws ) corresponding to p31 = = —349Sy2 + 73y5 has the

parameter 6 = (o, = = %) and it is uniformized by

3073030 10

(5 — 5s + 852)%(2 — 5)°s ~ (5—55+8s)(4— 5+ 45*)(2—5)?

t = — =
(8 — 55+ 552)2(1 — 25)5" 3(8 — 55 + 5s2)(1 — 25)3

Since (1/3,1/3,1/3,4/5) = ScctocSsSootoct is the parameter of solution 29 in P. Boalch
[3], we find that SoctooSsScoloo transforms (t,ws 1) to an algebraic solution which
coincides with solution 29 of Boalch [3] up to a coordinate change.

Remark 4.5. The polynomial i in this case is related with the polynomial Fj >
introduced in [28]. See also [12, §8.2].

4.17. SOLUTION 30 BY P. BOALCH [3] (LT19)

In this case, z is an algebraic function of y1,ys defined by

Y8 4028 + 2% =0.

3 3
) =~ d(ys) = 2, dlys) = 1, d(z) = =
(yl) 10) (y2) 5a (y?)) ) (Z)
" 8 2, B 9 .
h1 = = —_ .
1= (W o1¥2 T 1g¥2? F 135°
27

ho = yoys — 3y32° — yo2® *ZZS

1, 8 48 . 127 4,
h3—2y3 1721791 + 6y32* 7 Y2% 0%
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1 1 11
BY) =diag |—r — =, -1 — —, —r+ —| .
o 1ag r 3 r 30" 7‘—1—30

To solve the equation h = 0 as a cubic equation of y3, putting m = 35/2° and

(1—8)%(245)%(142s)?

m = (751577 , we find that h = (y3 — p1)(ys — p2)(ys — p3), where

p1= —272°(16 + 80s + 180s% + 240s® 4 1955* + 162s°
+ 1955% 4 24057 + 180s® + 80s” + 165'%)/80(1 + 5 + 5%)°,
p2= —272°( — 20 — 1005 — 2255 — 300s> — 2105 + 195s°
+ 24057 + 180s® + 80s” + 165'%) /80(1 + s + 5%)°,
p3=272°( — 16 — 80s — 18052 — 2405 — 1955 + 210s°
+ 30057 + 2255 + 100s” + 205')/80(1 + s + s2)°.

4y2 —78yq 25 —452°
_ (Ayp —T8ysz" —4527) g T ) has

The algebraic solution (¢,ws 1) corresponding to psi =
the parameter § = (1/30,1/30,1/30,7/10) and is uniformized by

‘ s5(2+ 5)(3 + 3s + 252)? w— s34 3s + 25%)
© (1425)(2+ 35+ 3s2)2 (14 28)(1+s5+52)(2+ 35+ 3s2)

In this case,

1112
Sootoc85500tacll = (73 9 97 7)'
3’3 35

On the other hand the algebraic solution to Painlevé VI equation (¢, ws2)
corresponding to

—39ySya — 2349523 + 5y325 + 3y,2°
10yo24

P32 = —

coincides with the solution 30 obtained by P. Boalch [3].

4.18. OCTAHEDRAL SOLUTION 12 BY P. BOALCH [4] (LT20)

In this case, z is an algebraic function of yy,ys defined by

27ys + 180y 1z — 20y223 + 2° = 0.
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396 15 572 195 407 o 5 110

hy = 20
L= Vst T T gl 2T T g g s

- 72?7)22 124 e %213’
by 21§§4Oy}7 e 525;00%522 B 98516270011}324
10501706300 yi'e 11954310590 %’ i;gig yi'?
N 52?115113’?212 sttt &ylzw’
. 40641121072 iy % )2 3012367211%222 B 864429304 20,4

13508464 15 o 46723424 5 5 120076768 1,

a1 N7 T 1907 N7 321489 /1
3539360 1, 1, 509344 1o 1, 52426 4 i

137781 1 7 T 3343t F T 1240020717

572 618 583 4 20 17 2,22 11 24
a1’ 302021379 T oos7ea11 Yt T 65431015027
1 1 5
3) _ e | _n_ L _
B diag | —r x r4+ — Bk —r 4+ — 12

It is straightforward to show h = (y3 — p1)(ys — p2)(ys — p3), where p1,p2,p3 are
defined by

1
pL= m{??ai(lé@y% + 22)3 — 8y1 2(62355744y1° — 13215312y 2>
+ 1753488182 — 116424y} 2° + 3850y7 2% — 1052'°)},
1
Py = m{ — 77u3 (18yF + 2%)% — 8y, 2(62355744y:° — 13215312522
+ 17534885 2" — 116424y 2° + 38507 2% — 1052'9)},
P3= Tga0 1 2(20785248y1°0 — 3207600y 2% + 318384y 2%
— 16632y 2% + 462y7 2% — 7210),
and w4 by

u? = 2(18yF — 8y12 + 22)(18y? + 8y 2 + 22).

Let (t,ws,1) be the algebraic solution corresponding to

z
= (270208224 231360y1°2* + 1241
D3,1 1102248y1( 702082240y;2 — 300231360y,° 2% + 697615 2
+ 864864325 — 108108y 28 + 5460y32'0 — 77212).
To obtain the parametric expression of (¢,ws 1), we introduce m, up by m = %1,

up = zua. Then

. "
_2 (o) w3,1_2 wC7
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where
. 4m* (=1 + 18m?)(3 — 104m? + 3528m* — 33696m° + 314928m%)
c = - )
(1+18m?)3u3
(=1 + 50m? — 684m* + 7128m°)
wo = — .

2(1 + 18m?)2up

Noting that both tc, we are rational with respect to m?, we put s = 18m?2. Moreover,
we put u = 9up. Then we find that the algebraic solution (¢, ws 1) has the parameter

0= (12, 112, 112, }2) and is uniformized by

; 1 n 252(1 — 5)(27 — 52s + 98s% — 5253 + 27s%) 1 n 9 — 255 + 1952 — 11s*
= — w = —
2 (14 s)3ud ’ 2 2(1 + s)%u ’

where u is defined by the relation
= 5(9s% — 145 +9).

Note that (1/2,1/2,1/2,2/3) = (s5845,5:)*ss55000 is the parameter of solution 12
of Boalch [4]. Then we find that by the Béacklund transformation corresponding to
(85S25y52)* 85500, (ta,wa) is transformed to an algebraic solution (¢,,w,) identified
with octahedral solution 12 in [4] by changing the variable s with 2s; + 1.

4.19. OCTAHEDRAL SOLUTION 11 BY P. BOALCH [4] (LT21)

In this case, z is an algebraic function of y;,ys defined by

—1y9 + z(3y% — 3y1z + 22) =0,

1 1

d(y2) = 5 d(ys) =1, d(z)= 5’

1
d(yl) = 67

4608 5120
hl = Y1Ys — ?yl — 768?]152’2 + Tyilzia

5120 2816 2560 256
-y i - =i =2
41472 179712 ., 347904

ho = yays — — Ut iz 5 Y823 4+ 77568y5 2% — 55040y 2°
22784 3968 2816
+ 25600y3 2% — 3 vz’ + 3 Y125 — o7 22,

Lo 38205052\, A267328

J— _ 3 8 4
hs = 5ys + —5 W1 5 28311552y 2* + 50724864y} 2

303562752 468189184 122945536
- Y7 2% + 513802244525 — Ty§z7 + fﬁzs

| 88273024 , T28T6032 , ,, 103284736 ., 1703936 ,
g 4 g1 N1 go1 243 ’
1 4

B®) — di S
S TS TS 9
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We put
1 = (=3 +u?® +V6u)yo, z=3V6uyo.

Then h = 45 - 2025(ys — p1)(ys — p2)(y3 — p3), where

9216
plz———{m9+9ﬂht—8%&¢+5%&¢—9%ﬁ4&1mm+um
+ 6u(—3 + u?) (3 +u)?(3 — 3u+u?)(3 4 3u+ u?)V6}yS,
13824
pg——44447{729 7290u + 7047u? — 2430u® — 6885u* + 1620u° + 426615 + 540u”

—mmL—%u+®mw—3m“+u
—du(=3 +u?) (34 u?)%(3 — 3u+ u?)(3 + 3u + u?)V6}yS,

13824
p3 = 7{729 + 7290u + 7047u? + 2430u® — 6885u* — 1620u° 4 42661’ — 540u”

—7%u<+%u-+ww0+am”+u
—du(=3 +u?)(3 4+ u?)%(3 — 3u+ u?)(3 + 3u + u?)V6}yS.

We consider the algebraic solution (¢, w3 2). Then

(t,ws2)
(3 = 3u +u?)%(3 + 6u + u?)*
- <(3 + 3u +u?)2(3 — 6u + u2)t’
(3 — 3u+ u?)(3 + 6u + u?){81 — 54u? + 162u* — 6ub + u® — 3v/6u(—3 + u?)3}
- (34 3u + u2)(3 — 6u + u2)3{9 + u* + V6u(3 — u2)} )

has the parameter 6 = (%, %, —%, %) It is easy to show that

1112)

WPt = (3533)

By the corresponding Bécklund transformation, we have

(t ) Pyz 1 w32 Ty 1 w3 2 — 1
7w 77 -, 7’ -, .
2=\t ) =\t wsa—t

(2+V6)s+v6
sf(2+\/6) ’
octahedral solution 11 in [4].

By the substitution v =

we conclude that (1 7:03 271) coincides with

4.20. SOLUTION 38 BY P. BOALCH (3] (LT26)
In this case,

d(y2) = % d(ys) =1,

) = ;.
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hy = _y1 Y1y n yivs

30 2 ?"'g"’yly&
ho = 5%{ + yin + 5y§y§ - 5yéy§ e
ha = _215%0 yiys + 353f95 + 351??/3 - 72%2 L8
B® — diag 77’7%’77’*125’*”115

We put yo = my?, where m = —%. Then we find that h = (y3 — p1)(ys —

p2)(ys — p3), where p1, pa, p3 are defined by

p1= {4+ 255 4 1355 + 4755 + 1150s* + 16655°
+ 137555 + 62557 — (2 + 5)%(1 + 5s)%(1 + s + 4s%)v}y7 /(905),
po = {4+ 255+ 1355 + 4755 + 1150s* + 1665s°
+ 13755% + 62557 + (2 + 5)%(1 + 55)*(1 + s + 45?)v}y7 /(90s°),
p3 = —(8 + 355 + 180s% + 545> + 13405 + 18275° + 140055 + 87557)y? /(90s°),

and v by the equation v? = (1 4 5s)(1 + s + 4s?). The algebraic solution (¢, w3 1)
corresponding to ps1 = (—5y¢ — 58ytys + 41yiy3 + 16y3)/(10y1) has the parameter
0= (71%, 71%, 712—5, %) and is uniformized by

. 1 3(4+20s+ 10552 + 34053 + 830s* + 11645° + 9255° + 50057)
2 2(2+ $)2(1 + 5s)v3 ’
1 (84265 + 71s® + 645 + 555" + 100s”)
1= 6s(2 + s)(1 4+ 5s)v ’

Note that (1/3,1/3,1/3,3/5) = s55,5,5s0 is the parameter of solution 38 of Boalch [3].
By direct computation, we conclude that the Backlund transformation corresponding
to $35y8,85 transforms (¢, ws 1) to solution 38.

Remark 4.6. The polynomial h defined above is regarded as the discriminant of
the complex reflection group ST27 in the sense of Shephard-Todd [30].

4.21. SOLUTION 37 BY P. BOALCH [3] (LT27)

In this case, z is an algebraic function of y;,ys defined by

—yas — 12 +22° =0,

diy1) = ¢, d(y2) = ¢

5’ d(y?)) =1, d(Z) =5
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hy = (175y1y3 — 703 2 + T0y? 23 + 378y, 25 — 54027) /175,

hy = (10y} — 120192 + T5y2ys + 30y 2% — 192y, 25 + 3242%) /75,

hs = (16y; + 80yiys + 25y3 — 80y;z* + 540y7 2% — 1080y, 2® + 432217) /50,
4 1 1

(3) — dj O e -
B diag | —r 5 T 15’ r+3 .

We put y; = mz?, where m = %. Then we find that h = (y3 — p1)(y3 —
p2)(ys — p3), where pi, pe, p3 are defined by
p1=2(4+ 105 + 455” + 145> + 4155 4 5675° + 400s°
425057 — (2 4 5)%(1 4 55)2(1 + s + 45%)v)2° /(2255°),
P2 = 2(4 + 105 + 4552 + 1455° 4 4155 + 5675 + 4005°
425057 4 (2 4 5)%(1 4 55)(1 + s + 45%)v)2° /(2255°),
p3 = —2(8 + 505 + 270s% + 8755% + 20755* + 29255 4 23755° + 125057)25 /(2255°),

and v by the equation v? = (1 4 5s)(1 + s + 4s?). The algebraic solution (¢, w3 1)
corresponding to p31 = —2(—38yfys + 8yiz + 2Ty3z + 45y1922?)/(25y1) has the

parameter 6 = (—%, —%, —%, %) and is uniformized by

1 3(4+20s 4 10552 + 34053 + 830s* + 116455 + 92555 + 50057)

t=2_ _
2 2(2+ 5)2(1 + 5s)v3 ’
S 1 (1+42s)(2+T7s+ 33s% + 3153 + 35s)
2179 2(2+ s)(1 4 3s + 952 + 553)v

Note that (1/3,1/3,1/3,1/5) = $;5,5,55555y5.0 is the parameter of solution 37 of
Boalch [3]. Then it is possible to confirm that the Backlund transformation corre-
sponding to $;5,5,55545yS, transforms (¢,ws 1) to solution 37.

4.22. OCTAHEDRAL SOLUTION 13 BY P. BOALCH [4] (LT30)

In this case,
1 3
d(yl) = gu d(yZ) = §7 d(y3) = 17

5 28 70 140
hi = §y€f - gy?w - gyi’y% + ?yg + 11Ys,
140
hy = ﬁyil — 15yfy2 + 84y3y5 + T0yTv5 + ya2ys,
3680 216160 30016
hs = —=3 yi® — 29 Yi’yo Tyioyg

92240 39200 7840 1
- yiys + 3 yi‘y§+Ty1y§+§y§,
3 Lo

-, —r—=,—r+-|.

g 8 2

BY) = diag |—r —
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We change -, y3 with m, g3 defined by the relations
2
Yo = (4m +5)y3, y3 = —35 (2025 + 3024m + 1120m2)y$ + gs.

The entries of the matrix T are polynomials of y1,m, g3. Then h is also a polynomial
of y1,m, q3. Putting

3(u? — i) (u? + 2iu+ 1) (u? + 2u — 1)
2w+ (14 i)u—1)3 ’

m= —

we find that h = (y3 — p1)(ys — p2)(ys — p3), where

42098 (1 4 76ut — 282u® + T6u'? + u'®)

h it (L +i)utu?)® ’

21095 (1 — 48u? + 76u* — 144u° — 282u® — 144u'0 + 76u'? — 48u'* 4 ')
P2 == (it (1 +i)utu?) ’
Dy = 21095 (1 + 48u? + 76ut + 144uS — 282u® + 144u'Y + 76u'? + 48u'? + u1®)

(—i+ 1 +du+u?)d
On the other hand, we have

7055 (8019 + 23652m + 25968m2 + 12544m3 + 2240m*)

P21 = 99 + 180m + 80m?2 ’

70
P31 = §y§(243 + 864m, + 896m? + 288m?),
703 (1215 + 2700m + 1984m? 4 480m?)

P32 =

3(5 + 4m)
Then by direct computation, we conclude that the algebraic solution (t,ws 1) (resp.
(t,ws1), (t,ws2)) has the parameter § = (3,1 % 1) (resp. (3,41, 1), (2, %,% ).

Among these three solutions, the simplest one is (¢, w3, 1), where

(=1 +u)?(1 +u)?(1 + 6u® + u*)?
(1+u?)?2(—=1—2u+u?)3(—1+2u+u?)3’

(1w (A4 u) (=i — (14 d)u+ u?) (1 — 2iu+ u?)? (1 + 2iu + u?)
BT ) (i u)(—1 — 20+ ) (—i + (L +d)u + u2)(—1 + 2u + u2)2’

t =

Noting thaut(%7 %7 %7 %) P,.P,,P, Zs(;(swsyszs(;)‘lsoo(%, %7 %7 %) is the parameter of
solution 13 of Boalch [4], we conclude by direct computation that the solution (¢, w3 1)

is equivalent to solution 13.

Remark 4.7. As was pointed out in [12, §5], the polynomial h is related with
Fq4-singularity.
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4.23. THE SOLUTION BY P. BOALCH [4, P.110] (LT32)

1 1
d(y1) = Yok d(y2) = 3 d(ys) =1,

0 a2, 1230 g0 369 45, 410

h - — gy ,
1= 13 Y1 59 Y1 Y2 D) Y1 Y 3 Y1Ys + Y193,
369
hy = = =-yi° — 324y1%ys — 2214y"y3 + 3321y1"ys + 12395 + yays,
35459514
hs = —Tyf‘l + 3234654y 0y, + 6687756y7%y2 + 1680426y1%y3
77326 1
+ 16702416224 — 6263406y} 45 + Ty6 + §y§,
3 5 23
Bg) = diag |—r — =T 6,77’+E

Putting y» = myi*, where m = 7917(6—3;4:3)1;:’7583, we find that h = (y3 — p1)(ys —

p2)(y3 — p3), where p1,pa, p3 are defined by
p1 = 30758142 ( — 10045 — 2712155 — 281547s% — 16743353
— 476285 — 88205° — 9035° + 189s” + 63s°
+ 195 — 15498(1 + 5)*(7 + s + s*)v) /3(—=7 + 5)%s>
p2 = 30758t1%2( — 10045 — 2712155 — 281547s% — 16743353
— 476285 — 88205% — 90355 + 18957 + 63s°
+ 195" + 15498(1 + 8)*(7 + 5 + s%)v) /3(—T7 + 5)°s>
p3 = —15379y?( — 184828 — 12475895 — 9505445% — 82496453
— 2434325 — 732065° — 2049655 — 75657
— 25258 + 2115%) /6(—7 + 5)%s,

and v by the equation v? = s(7+ 5+52). The algebraic solution (¢, ws, 1) corresponding
to p31 = %(486;1/%2 + 725Ty28ys — 20295y14y2 — 6683y3) has the parameter § =
(5/42,5/42,5/42,41/42) and is uniformized by

[ 1 T84 81275 - 723657 — 52085° — 151251 — 3785° — 845° 4 o
2 432(1 + 8)2(7T+ s + s2)v ’
1 (56 + 5s + 2652 + 1653 + ds* + 57
w31 = 5+ .
T2 36(1 + s)v

Note that (4/7,4/7,4/7,1/3) = $45,5,55Sc00 is the parameter of the solution obtained
by P. Boalch [4, p.110]. It is possible to confirm by direct computation that the
Bécklund transformation corresponding to s;5,5,5sS00 transforms (¢, ws 1) to solution
obtained by P. Boalch.
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4.24. SOLUTION OBTAINED BY A. KITAEV [17, P.15] (LT33)

In this case, z is an algebraic function of y1,ys defined by the relation
95ys + 19y12° + 5212 = 0,

dp) =5 d) =4 dw)=1, )=
hi = (2553y; 4 T4y1ys + 4595413 21 4 3396617 2% 4 8154y, 2*? 4 6212°%) /74,
hy = (28670y2ys + 1450702y12° + 725351y 219
+ 33543992233 + 114741y, 27 + 139592°1) /28670,
hs = (296769yS + 5y2 — 7284330y 21 — 4909005y 2% — 63342043 2% 4 250695y7 25
+ 82134y, 2™ + 6885251) /10,

11 1 17

B®) = di S S — — .
o diag | —r Yok T 2 r+42

1 —14—21s—s°

4 where m = iz we find that h = (y3 — p1)(y3z —
p2)(y3 — p3), where py, pa, p3 are defined by

Then putting y; = mz

p1 = 56( — 12397 — 1115735 — 108108s* — 72177s>
— 216095 — 529255 — 12185% — 6357 + 135°
— 8694(1 4 5)%(7 4+ 5 + s2)v)2*2 /(=7 + )55,
pa = 56( — 12397 — 1115735 — 108108s% — 72177s>
— 216095 — 52925° — 12185% — 635" + 135°
+ 8694(1 + 8)3(7+ s + sH)v)2*2 /(=T + 5)55%,
p3 = —14( — 76636 — 8621555 — 7325645> — 549780s>
— 1569965 — 39690s° — 86525° + 25257
+1095%)242 /(=7 + 5)%53,

and v by the equation v? = s(7+s+s?). The algebraic solution (¢, w3 1) corresponding to
p31 = (1771y} +16146y5 211 +11898y% 228 +2826y; 242 +2072°%) /(Ty1 ) has the parameter
0=(1/7,1/7,1/7,2/3) and is uniformized by

—784 — 8127s — 72365% — 52085 — 1512s% — 378s% — 8455 + &7

1

t= -
2 432(1 4 $)2(7+ s + s?)v ’

1

2

s(—623 — 330s — 279s% — 625> — 3s* + s°)
12(1+ s)(14 + 21s + s3)v '

w31 =

)
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We now recall the algebraic solution (tx;a,wria) (cf. [17, p.15]) defined by

1
tkia =3
| (1457 — 10555 + 25257 — 3025° + 4205° — 336" + 112 + 725 — 965 + 32)

16(s +2)2(s — 1)3(s2 — s+ 1)vp ’
(35 — 2)(s2 — 25 + 4)?
Ad(s+2)(s —1)%(s2 —s+1)(3s2 —4s + 4)
" (—1455 4 255 — 2083 — 852 + 165 — 8 — 8(5 — 1)(s2 — s + 1)vb)
(254 1)(3s% — 1052 + 65 — 2) — 14(s — 1)vy ’

Wiia =1+

where vj, is defined by the equation v¥ — (25 + 1)(1 — s)(s*> — s + 1) = 0. Moreover, it
is known (cf. [20]) that (txa,wkia) has the parameter (1/3,1/7,1/7,6/7). It is easy
to show that

SeoSaTz0 = (1/3,1/7,1/7,6/7)

and that soosgr, transforms the algebraic solution (¢,ws 1) to (¢,¢/ws1). By the

_ (—1-2s; _ 3vp
substitution s = Citsn) U= Tiget

(tkia, WiiA)|s—s,- As a consequence, (t,ws 1) is equivalent to (tx;a, Wiia)-

yz, we conclude that (t,t/ws.1) turns out to be

4.25. THE 2,3,7 SOLUTION BY P. BOALCH [4] (LT34)

In this case, z is an algebraic function of y,ys defined by the relation

121
6723/1 + ygz + ylz T4 3=,
17 2 1
d(y1) = dy2) = -, d(ys) =1, d(z)=

42’ 3’

hi = (133891945y] + 133891945y1y32° — 1205027505y5 217
— 57568896y7 234 + 2355091200y1z51 + 13276569602°%) /(13389194527),
ho = ( — 187785466%° + 217272440y,y32"® — 2735304825y 2'" — 161650695365 23!
— 34015167648y7 2°! — 17644290048y, 2% — 34464890882°%)/(2172724402%°),
hs = (115727222325y% — 65143905512400y7 2" + 11869458700y3 2**
+ 58725922432320y1 234 4 107178140805120y3 2°! 4 87229921185792y22%8
+ 56437884518400y; 2%° + 90623154585602'°%) /(237389174002'%),

2 1 13
B® — gi S ¥ -~
s = diag | =7 7 T T
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2 3
Then putting y; = mz!7, where m = —281THLsH3s +57) "o g that h = (ys —

11s(—7+s)?
p1)(y3 — p2)(ys — p3), where

p1 = —8804096( — 490 — 66155 — 4347s% — 49565° — T565* — 189s> — 1475°
+ 457 — 1890(1 + 5)*(7 + s + 5%)v)2*? /6655(—T7 + 5)5s>,
P2 = —8804096( — 490 — 66155 — 43475 — 49565° — 7565 — 189s° — 1475°
+ 457 4+ 1890(1 + 5)*(7 + s + 5%)v)2*? /6655(—T7 + 5)55>,
p3 = 2201024( — 25480 — 2579855 — 23587252 — 1624565° — 498965* — 124745°
— 235255 +195)2%2 /6655(—7 + 5)%s>,

where v is defined by the equation v? = s(7 + s + s2). The algebraic solution (¢, ws 1)
corresponding to

17203175y} —198611820y7 21" — 1627053127 24 +-9757440y, 25! +316108802%°
P31= 1244485y, 2°

has the parameter § = (1/42,1/42,1/42,25/42) and is uniformized by (¢,ws 1), where

L1 T84 81275 — 723657 — 52085 — 15125" — 37855 — 845 + 57
2 432(1 4 8)2(7+ s + s?)v ’
wa 1 — 1 N (28 + 2585 + 20152 + 12453 + 30s* + 65° + 86).
T2 6(1+ s)(17 + 15s + 352 + s3)v)

Note that (2/7,2/7,2/7,1/3) = ss(s55y45.55)*0 is the parameter of the 2,3,7 solution

obtained by P. Boalch [4, p.104]. By the Bécklund transformation corresponding to
4 . . . . .

S5(S28yS285)%, (t,ws 1) is transformed to (¢4, w,), which coincides with the one shown

in Boalch [4].

4.26. SOLUTION 46 BY P. BOALCH [3] (LT39)

In this case, z is an algebraic function of y,ys defined by the relation

yi 4 25(—y2 + 2%) =0,

1 1 1
= — = — frg 1 ——
d(y1) g d(y2) 5’ d(ys) , d(z) 1
183 11 75
hy = tits + ——1t° + — 1322 + Zt12* + 252°
1 13+20001+81Z +161Z+ z°,

11 139 27 25

h:tt 76_742_7t24 8t 5_76

2 = bls ¥ opggtt T qgpltt T g F T8 E e
1. 128991 . 6479 285

B — 242 /8 46,2 4.4

3= 9% 60000 T 1600117 T 128117

375 59375
— 215325 + 6—4t§z6 — 375,27 + ng
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1 )
a_r—’_i

1
Bgo =diag |-r— -, —r 5

37 12
Putting yy; = mz, where m = %, we find that h = (y3 —p1)(ys —p2) (y3 —
ps), where p1, p2, p3 are defined by
p1 = 2*( — 5504 + 330245 — 9081652 + 137600s> — 867605 + 1419845°
— 26378455 + 26949657 + 508505° + 408805° + 2918450 4 1413651
+ 235652 + 675(2 + 5)%(2 — 25 + 35%)%(2 — Ts + 85%)v)/(8100s%),
p2 = 2*( — 5504 + 330245 — 9081652 + 1376005> — 867605 + 1419845°
— 26378455 + 2694965” + 50850s° + 408805 4 2918450 4 141365*!
+ 235652 — 675(2 + 5)%(2 — 25 + 35%)%(2 — 7s + 85%)v)/(8100s%),
p3 = —21( — 37696 + 2261765 — 6219845% + 9424005 — 844740s" + 781416s°
— 98361655 + 79160457 — 204755° — 543805° + 1941650 + 182645
+ 30445'2)/(8100s%),

and v by the equation v? = (2 + s)(2 — 7s + 8s?). The algebraic solution (t,ws 1)

. o (589m°+6450m> —6500m>+13125m+37500)z*
corresponding to psq = 200m has the parameter

0 =1(1/12,1/12,1/12,3/4) and is uniformized by

t= % + (=2 + 45 + 52)(32 — 1285 + 2885 — 28853 + 2585*
— 3125° + 42955 — 8457 + 245% + 165"
+8519)/2(2 + 5)(2 — 25 4 35%) %03,
w3, = % + (=24 5)(— 16 + 485 — 6452 + 225> — 345" + 915° 4 3055
+457)/2(2 + 5)(2 — 25 + 35) (4 — 65 + 35° + 25° ).

It is easy to show that s;sys;555,5y5.0 = (1/3,1/3,1/3,1/2). The latter parameter
corresponds to solution 46 obtained by P. Boalch [3]. Let (%,1) be the algebraic
solution obtained from (¢,ws 1) by the Bécklund transformation corresponding to
S28ySz85525ySz. Then

-1
=5+ (=2 + 45 + 5%)(32 — 1285 + 288s% — 2885 4 258s% — 3125°
+ 429s% — 845" + 245® + 165”
+8519)/2(2 + 5)%(2 — 25 + 35%)%(2 — s + 852)u,
1 k> 14
W= 5+ (—64+320s - 73652 + 880s° 4 1324s% — 327255 + 26685°

+ 80857 + 415s® + 458s” + 302517
+5651)/2(2 + 5)(2 — 25 + 35%) (8 — 245 + 3052
— 105 + 1055* + 65° + 255)u.
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Now we recall solution 46 obtained by Boalch. We denote it by (tBoss, WBoss). Then
tBo46 =t and

1
WBots = 5 (416 — 22885 + 621652 — 98365> + 97605 — 83125° + 65625° — 314357

— 24258 + 505 + 7250 + 165'1)
/2(2 — 25 + 35%)(104 — 3125 + 270s% + 505° — 75s* + 185 + 265°)u.

To identify (%,1) with (tBos, WBo4s), We define a map ¢ : (s,u) — (s1,v) by
2(1 - 4
A-s1)  _ v

245 72—&-81’

where v = £1/(s1 + 2)(857 — 7s1 + 2). Then it is straightforward to show that
(t,0) 0 ¢ = (tBods, WBot6)|s s »

which implies that (¢,ws 1) is equivalent to solution 46.

4.27. SOLUTION III

In this case,
1 2
d(y1) = 3’ d(y2) = 3’ d(ys) =1

1
ha = 5 (276(1+ 66}y +363yTy2 +u3) + y1s.

9
hy = —— (=14 28)y1(816(3 + 28)yy + 30yTy2 — 5y3) + Y2us,

10
3
hs = —5(1 +26)(729(—1 + 26)(1 + 462)y% + 12155(—1 + 26)yiy2
1
+135(—1 + 20)y2y2 + 5y3) + §y§.
, 1 1
Béi) = diag | —r — 3T + 3

h = (27(1 4+ 26)y} + 9(1 + 20)y192 + y3)
X (729(—1 + 26)%(—1 + 26 + 46%)y% + 486(—1 + 26)*(1 + 20)yi v
+27(—1+26)(1 4 60)yiys + Sys + 1085(—1 + 28)y3ys3
+ 18(—1+ 20)y1y2ys + ¥3)-

(0 is a constant.)
Putting ys = —3(=9 + 185 +m?)y?, we find that h = (ys — p1)(ys — p2)(ys — ps),

where 9
p1 = 5(1 +26)(—15 4 66 + m?)y3,

1 ,
p2 = 5 (81— 2165+ 10862 — 9m? + 185m? — 2m3)y?,

1
p3 = 5(81 — 2160 4 1080% — 9m? + 186m? + 2m>)ys.
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The algebraic solution (¢, ws 1) corresponding to p3 ;1 = é(—27 + 185 +m?)(—9 + 185 +
2m?)y3 is uniformized by

‘o (=14 5)%(2+ s) T (=1 +5)(2+5)
(1+s)2(-2+s) > s(I+s)
where m = £. This coincides with Solution III given in [20].

Remark 4.8. We now discuss the case where the potential vector field is integrable.
For this purpose we introduce

o 3 o  216ct

1
F = §(y1y§ +y3y3) + eyrys + 6c%yTys + =YD

where ¢ is a constant. It is clear from the definition that F is a prepotential. If
c= %, then F' coincides with the second prepotential in the introduction under the
identification (y1,y2,y3) = (%1, 2, x3). On the other hand, if ¢ = —% and § = 0, then
(Oy, F, Oy, F', 0y, F') = (h1, ho, h3). In this case, we find that

h= (275 + 9yry2 + y3)(—729y5 + 486y y> — 2Tyiys + 8y5 — 18y1y2y3 + ¥3)

is regarded as the discriminant of the Weyl group of type Bs.

4.28. SOLUTION IV

In this case,

3 1
d = d =—, d =1
(y1) 2%’ (y2) =5, dlys) =1,
-2 1 q—1
B® —diag |—p 41— . _ = _ 1 -

16
h1 = y1ys + ;yly;

1
ha = yays + 75— (=64(¢ — 1)(q — 2)y5 + 3¢°4),
) = Uolss 12q(q—1)( (¢ —1)(qg = 2)y; 1)
1 1
hs = 5u3 + @(256@ — Dy + 24¢%yTye),
1 )
h= 4o (27" + 256(8g — 9)¢* iy + 16384(1 — )

— 144q°u1y2ys + 1024(3 — 2q)qyays + 64(3 — 0)a°y3y3 + 44°y3)-
(We put u; = y{ for simplicity.)
Introduce a parameter s by

_128(—14 8)3(2 4 5)*(1 + 2s)%y3
N 27(1+ s + s2)3 '

Uy
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Then we find that h = (y3 — p1)(y3 — p2)(ys — p3), where

~ 16y3{-3(1+ s+ %)%+ q(—1+5)(1 4 25)(5 + 5s + 25%)}

; 3q(1+ s+ s2)?

_163{-3(1 + s+ 52)2 + q(2+ s)(1 + 25)(2 — s + 25%)}
= 3g(1+ s + s2)? :
C16y3{3(1+ 5+ 532+ q(—1+ 5)(2+ 5)(2+ 5s + 5s%)}

3q(1+ s+ s2)2
The algebraic solution (¢,ws 2) corresponding to
1693 {q(—1+ )22+ 5)2(1 +25) — 3(1 + s + %)}
P32 = 3q(1 -5+ 57)8

is uniformized by

)

p3 =

t__(—l—f—s)(l—i—s)?’ w (1451 +5)?
o 1+2s ’ 5,27 14+s+s2

Then (¢, ws2) coincides with Solution IV given in [20] by the substitution s — —s; — 1.

Remark 4.9. As in the case of Solution III, we discuss the case of Solution IV where
the potential vector field is integrable. The polynomial

F=1%ﬁ+£meﬁﬁ+i£,
2 2 15

where ¢ is a constant, is a prepotential. If ¢ = %, then F' coincides with the first
prepotential in the introduction under the identification (y1,y2,¥y3) = (1, x2,x3). On
the other hand, if ¢ = 8 and ¢ = 2 and y1 <> y2, then (9, F, 0y, F, 0, F') = (ha, h1, h3).
This means that changing the roles of y;and y» and also the roles of h; and hsy, we
find that F' is a prepotential and (hs, h1, h3) is the associated potential vector field.
In this case, we find that

27
h= Zy‘f + 224ytys — 512yS — 3632 yays — 64ysys + Syaya + v

is regarded as the discriminant of the Weyl group of type As. Indeed, the discriminant
of 2% — dysa® + y12 — %yg + 2y as a polynomial x coincides with h.

Remark 4.10. In this case, it follows from the definition that (hq, he, h3) is a poly-
nomial potential vector field if ¢ is a natural number. As a consequence, there are
an infinite number of polynomial potential vector fields. On the other hand, (h1, ho, h3)
is an algebraic potential vector field if ¢ is a rational number and is a non-algebraic
potential vector field if ¢ is not rational.
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