PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The study of chemical composition and enzymatic hydrolysis efficiency of poplar wood (Populus deltoides x maximowiczii) after steam explosion pretreatment

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A beneficial influence of the steam explosion pretreatment on simple sugars yield after enzymatic hydrolysis was observed. The highest average glucose content (25.8%) in the hydrolysate after steam explosion pretreatment at 190 oC was achieved. In turn, an application of steam explosion pretreatment at 205 oC resulted in a decrease of enzymatic hydrolysis efficiency and 21.8% of glucose was obtained only. In case of xylose, a similar correlations were observed. The highest average xylose content (4.0%) at 190 oC was obtained and the decrease of xylose content (to the level of 2.4%) after enzymatic hydrolysis of biomass pretreated at 205 oC was observed. Probably, the decrease of the sugars content was caused by a condensation reactions of lignin and polysaccharides. Other explanation of the obtained results may be formation of inhibitors, which could hinder enzymatic hydrolysis. This reason may be especially important, because in these studies to enzymatic hydrolysis process unwashed solid fraction was used. Obtained results were correlated to the chemical composition of the studied wood. The partial hemicelluloses degradation and dissolution led to decrease in its content and at the same time increased the content of extractives. Lignin content stayed roughly the same for both untreated material and steam explosion pretreated at 160 oC and 175 oC. However, its content increased rapidly after steam explosion pretreatment at 190 oC and 205 oC. Cellulose content was not a subject to significant changes, although its apparent increase, when compared to cellulose content in untreated wood, was probably due to decline in hemicelluloses content.
Twórcy
autor
  • Department of Wood Science and Wood Protection WULS-SGGW
  • Department of Wood Science and Wood Protection WULS-SGGW
  • Department of Wood Science and Wood Protection WULS-SGGW
  • Department of Wood Science and Wood Protection, Warsaw University of Life Sciences – SGGW
autor
  • Department of Wood Science and Wood Protection, Warsaw University of Life Sciences – SGGW
autor
  • Department of Wood Science and Wood Protection, Warsaw University of Life Sciences – SGGW
Bibliografia
  • 1. ALVIRA P., TOMÁS-PEJÓ E., BALLESTEROS M., NEGRO M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101 (13), 4851-4861.
  • 2. ANTCZAK A., RADOMSKI A., ZAWADZKI J. (2006). Benzene substitution in wood analysis. Annals of Warsaw University of Life Sciences – SGGW, Forestry and Wood Technology, 58,15-19.
  • 3. BRODEUR G., YAU E., BADAL K., COLLIER J., RAMACHANDRAN K., RAMAKRISHNAN S. (2011). Chemical and Physicochemical Pretreatment of Lignocellulosic Biomass: A Review. Enzyme Research, 1,1-17.
  • 4. CANTARELLA M., CANTARELLA L., GALLIFUOCO A., SPERA A., ALFANI F. (2004). Effect of inhibitors released during steam explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnology Progress, 20, 200-206.
  • 5. ELBE P. (2013). Wpływ produktów wysokotemperaturowej hydrolizy drewna topoli (Populus sp.) na aktywność enzymu Dyadic Cellulase CP CONC, Praca dyplomowa, SGGW, Warszawa.
  • 6. EL-NAGGAR N.E., DERAZ S., KHALIL A., (2014). Bioethanol production from lignocellulosic feedstocks based on enzymatic hydrolysis: Current Status and recent developments. Biotechnology, 13, 1-21.
  • 7. GROUS W., CONVERSE A., GRETHLEIN H. (1986). Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzyme and Microbial Technology, 8, 274-280.
  • 8. KARPIŃSKI S., KUPCZYK A. (2016). Wprowadzenie: Wyniki wybranych badań przeprowadzonych w ramach projektu WOODTECH, Warszawa: Oficyna Wydawniczo-Poligraficzna ADAM.
  • 9. KIM Y., XIMENES E., MOSIER N. S., LADISCH M. R. (2011). Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme and Microbial Technology, 48, 408-415.
  • 10. KRUTUL D. (2002). Ćwiczenia z chemii drewna oraz z wybranych zagadnień chemii organicznej. Wydawnictwo SGGW, Warszawa.
  • 11. LI J., HENRIKSSON G., GELLERSTEDT G. (2007). Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresource Technology, 98, 3061-3068.
  • 12. MARTIN-SAMPEDRO R., CAPANEMA E. A., HOEGER I., VILLAR J. C., ROJAS O. J. (2011). Lignin changes after steam explosion and laccase-mediator treatment of eucalyptus wood chips. Journal of Agricultural and Food Chemistry, 59, 8761-8769.
  • 13. MICHALOWICZ G., TOUSSAINT B., VIGNON M. (1991). Ultrastructural-changing in poplar cell wall during steam explosion treatment. Holzforschung, 45, 175-179.
  • 14. MOSIER N., WYMAN C., DALE B., ELANDER R., LEE Y. Y., HOLTZAPPLE M., LADISCH M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673-686.
  • 15. PN-92/P-50092 Surowce dla przemysłu papierniczego. Drewno. Analiza chemiczna.
  • 16. RAHIKAINEN J. L., MARTIN-SAMPEDRO R., HEIKKINEN H., ROVIO S., MARJAMAA K., TAMMINEN T., ROJAS O. J., KRUUS K. (2013). Inhibitory effect of lignin during cellulose bioconversion: the effect of lignin chemistry on non-productive enzyme adsorption. Bioresource Technology, 133, 270-278.
  • 17. ROBERT D., BARDET M., LAPIERRE D., GELLERSTEDT G. (1988). Structural changes in aspen lignin during steam explosion treatment. Cellulose Chemistry andTechnology, 22, 221-230.
  • 18. SUN Y., CHENG J. (2002). Hydrolysis of lignocellulosic materials for ethanolproduction: a review. Bioresource Technology, 83, 1-11.
  • 19. Vermaas J.V., Petridis L., Qi X., Schulz R., Lindner B., Smith J.C. (2015).Mechanism of lignin inhibition of enzymatic biomass deconstruction. Biotechnologyfor Biofuels, 8, 217.
  • 20. ZAWADZKI J., RADOMSKI A., ANTCZAK A., KUPCZYK A. (2016).Nowoczesne aspekty badawcze związane z otrzymywaniem bioetanolu z biomasy lignocelulozowej. in: Wyniki wybranych badań przeprowadzonych w ramach projektu WOODTECH, Warszawa: Oficyna Wydawniczo-Poligraficzna ADAM.
  • 21. ZAWADZKI J., SZADKOWSKA D., ANTCZAK A., ELBE P., RADOMSKI A., DROŻDŻEK M., ZIELENKIEWICZ T., KŁOSIŃSKA T. (2015). Effect of furfural on the enzyme activity during enzymatic hydrolysis of cellulose isolated from poplar wood (Populus sp.). Przemysł Chemiczny, 94, 1941-1944.
  • 22. ZHENG Y., PAN Z., ZHANG R. (2011). Overview of biomass pretreatment for cellulosic ethanol production. International Journal of Agricultural and Biological Engineering, 2(3), 51-68.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0435a035-d452-40e3-8163-a27aa1b1a326
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.