PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of Mechanical, Physical and Durability Properties of Metakaolin-Based Geopolymer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to their potential to lower CO2 emissions linked with the cement and concrete industries, geopolymer binders are a desirable alternative for Portland cement binders. However, if they are to become a viable alternative to conventional Portland cement materials, their resilience in harsh conditions has to be further investigated. This paper presented mechanical and short-term durability properties of metakaolin based geopolymer concrete at sulphuric acid (H2SO4) solutions exposed with the concentrations of 2%, 3%, 4% and 5% for 14 days. (0%) or unexposed sample also prepared as referral and comparison. The geopolymer concretes were synthesized using an alkali activation of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3). The main objective of the study was to examine the durability and deterioration mechanism parameters like different acid percentages, changes in weight, compressive strength, density and water absorption. Morphology analysis also performed in this study. The results indicated that metakaolin geopolymer experienced some strength deterioration with increasing sulphuric concentration solutions which are from 32.58 MPa, 20.67 MPa and 4.25 MPa at unexposed (0%), 2% and 5% sulphuric acid immersion respectively. Furthermore, change in weight or mass loss and water absorption after the chemical attack resulted directly proportional to sulphuric acid concentration due to increment of crack on the sample. Among that, the metakaolin geopolymer submerged in 2% acid gives the optimum results in terms of durability, mechanical and physical qualities.
Twórcy
  • Universiti Malaysia Perlis (UniMAP), Faculty of Mechanical Engineering Technology, 02600, Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer & Green Technology (CeGeoGTech), 02600, Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer & Green Technology (CeGeoGTech), 02600, Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Taman Muhibbah, Jejawi, 02600 Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Mechanical Engineering Technology, 02600, Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer & Green Technology (CeGeoGTech), 02600, Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Taman Muhibbah, Jejawi, 02600 Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer & Green Technology (CeGeoGTech), 02600, Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Taman Muhibbah, Jejawi, 02600 Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Mechanical Engineering Technology, 02600, Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer & Green Technology (CeGeoGTech), 02600, Arau, Perlis, Malaysia
  • Universiti Tun Hussein Onn, Faculty of Engineering Technology, Pagoh, Johor, Malaysia
Bibliografia
  • [1] Y.H.M. Amran, R. Alyousef, H. Alabduljabbar, M. El-Zeadani, Clean production and properties of geopolymer concrete; A review, Journal of Cleaner Production 251 (01), 119679, (2020). DOI: https://doi.org/10.1016/j.jclepro.2019.119679
  • [2] W.K. Part, M. Ramli, C.B. Cheah, An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products, Construction and Building Materials 77, 370-395 (2015). DOI: https://doi.org/10.1016/j.conbuildmat.2014.12.065
  • [3] M.M. al Bakri, O. Abdulkareem, A. R. Rafiza, Y. Zarina, M.N. Norazian, H. Kamarudin, Review on Processing of Low Calcium Fly Ash Geopolymer Concrete, Australian Journal of Basic and Applied Sciences 7 (5), 342-349 (2013).
  • [4] N.A. Jaya, M.M.A.B. Abdullah, C.M.R. Ghazali, M. Hussain, K. Hussin, R. Ahmad, Kaolin Geopolymer as Precursor to Ceramic Formation, MATEC Web of Conferences 78, 01061 (2016). DOI: https://doi.org/10.1051/matecconf/20167801061
  • [5] Z. Hariz, A. Mohd, M. Al, H. Kamarudin, A. Nurliyana, B. Ridho, Review on Various Types of Geopolymer Materials with the Environmental Impact Assessment., MATEC Web of Conferences 97, 01021 (2017). DOI: https://doi.org/10.1051/matecconf/20179701021
  • [6] Y.M. Liew, C.Y. Heah, L.Y. Li, N.A. Jaya, M.M.A.B. Abdullah, S.J. Tan, K. Hussin, Formation of one-part-mixing geopolymers and geopolymer ceramics from geopolymer powder, Constr. Build. Mater. 156, 9-18 (2017). DOI: https://doi.org/10.1016/j.conbuildmat.2017.08.110
  • [7] S. Luhar, I. Luhar, R. Gupta, Durability performance evaluation of green geopolymer concrete, European Journal of Environmental and Civil Engineering 26 (10), 4297-4345 (2022). DOI: https://doi.org/10.1080/19648189.2020.1847691
  • [8] R. Mohamed, R.A. Razak, M.M. al Bakri Abdullah, L.A. Sofri, I.H. Aziz, N.F. Shahedan, Setting Time and after Setting Properties of High Calcium Fly ash Geopolymers with Different Concentration of Sodium Hydroxide, Archives of Metallurgy and Materials 67 (2), 563-567 (2022). DOI: https://doi.org/10.24425/amm.2022.137791
  • [9] A.S. Sauffi, W. Mastura, W. Ibrahim, M. Mustafa, A. Bakri, Phase Analysis of Different Liquid Ratio on Metakaolin/Dolomite Geopolymer, Arch. Metall. Mater. 67, 247-250 (2022). DOI: https://doi.org/10.24425/amm.2022.137497
  • [10] W.M.W. Ibrahim, K. Hussin, M.M.A.B. Abdullah, A.A. Kadir, Geopolymer lightweight bricks manufactured from fly ash and foaming agent, AIP Conf. Proc. 1835 (1), 020048 (2017). DOI: doi: https://doi.org/10.1063/1.4981870
  • [11] D.D. Burduhos Nergis, M.M.A.B. Abdullah, P. Vizureanu, M.F. Mohd Tahir, Geopolymers and Their Uses: Review, IOP Conf. Ser. Mater. Sci. Eng. 374 (1), 012019 (2018). DOI: https://doi.org/10.1088/1757-899X/374/1/012019
  • [12] P. Zhang, Z. Gao, J. Wang, J. Guo, S. Hu, Y. Ling, Properties of fresh and hardened fly ash/slag based geopolymer concrete: A review, J. Clean. Prod. 270, 122389 (2020). DOI: https://doi.org/10.1016/j.jclepro.2020.122389
  • [13] F.U.A. Shaikh, Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates, International Journal of Sustainable Built Environment 5 (2), 277-287 (2016). DOI: https://doi.org/10.1016/j.ijsbe.2016.05.009
  • [14] A. Koenig, A. Herrmann, S. Overmann, F. Dehn, Resistance of alkali-activated binders to organic acid attack: Assessment of evaluation criteria and damage mechanisms, Constr. Build. Mater. 151, 405-413 (2017). DOI: https://doi.org/10.1016/j.conbuildmat.2017.06.117
  • [15] Y. Xie, X. Lin, T. Ji, Y. Liang, W. Pan, Comparison of corrosion resistance mechanism between ordinary Portland concrete and alkali-activated concrete subjected to biogenic sulfuric acid attack, Constr. Build. Mater. 228, 117071 (2019). DOI: https://doi.org/10.1016/j.conbuildmat.2019.117071
  • [16] A.M. Izzat, A.M.M. Al Bakri, H. Kamarudin, L.M. Moga, C.M. Ruzaidi, M. Faheem, A.V. Sandu, Microstructural analysis of geopolymer and ordinary Portland cement mortar exposed to sulfuric acid, Mater. Plast. 50 (3), 171-174 (2013).
  • [17] M.A.M. Ariffin, M.A.R. Bhutta, M.W. Hussin, M. Mohd Tahir, N. Aziah, Sulfuric acid resistance of blended ash geopolymer concrete, Constr. Build. Mater. 43, 80-86, (2013). DOI: https://doi.org/10.1016/j.conbuildmat.2013.01.018
  • [18] M.A. Fadzil, M.S. Muhd Nurhasri, M.A. Norliyati, M.S. Hamidah, M.H. Wan Ibrahim, R.Z. Assrul, Characterization of Kaolin as Nano Material for High Quality Construction, MATEC Web of Conferences 103, 09019 (2017). DOI: https://doi.org/10.1051/matecconf/201710309019
  • [19] S. Samal, N.P. Thanh, B. Marvalova, I. Petrikova, Thermal Characterization of Metakaolin-Based Geopolymer, Jom. 69 (12), 2480-2484 (2017). DOI: https://doi.org/10.1007/s11837-017-2555-8
  • [20] B.H. Mo, H. Zhu, X.M. Cui, Y. He, S.Y. Gong, Effect of curing temperature on geopolymerization of metakaolin-based geopolymers, Applied Clay Science 99, 144-148 (2014). DOI: https://doi.org/10.1016/j.clay.2014.06.024
  • [21] ASTM C642 Standard Test Method for Density, Absorption and Voids in Hardened Concrete.
  • [22] Standard Test Methods for Chemical Resistance of Mortars, Grouts, and Monolithic Surfacings and Polymer Concretes 1.
  • [23] Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens).
  • [24] A.P. Vieira, R.D. Toledo Filho, L.M. Tavares, G.C. Cordeiro, Effect of particle size, porous structure and content of rice husk ash on the hydration process and compressive strength evolution of concrete, Construction and Building Materials 236, 117553 (2020). DOI: https://doi.org/10.1016/j.conbuildmat.2019.117553
  • [25] C. Bai et al., High-porosity geopolymer foams with tailored porosity for thermal insulation and wastewater treatment, J. Mater. Res. 32 (17), 3251-3259 (2017). DOI: https://doi.org/10.1557/jmr.2017.127
  • [26] Y. Luna-Galiano, C. Fernández-Pereira, M. Izquierdo, Contributions to the study of porosity in fly ash-based geopolymers. Relationship between degree of reaction, porosity and compressive strength, Materiales de Construccion 66 (324), (2016). DOI: https://doi.org/10.3989/mc.2016.10215
  • [27] C. Ng, U.J. Alengaram, L.S. Wong, K.H. Mo, M.Z. Jumaat, S. Ramesh, A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete, Constr. Build. Mater. 186, 550-576 (2018). DOI: https://doi.org/10.1016/j.conbuildmat.2018.07.075
  • [28] K. Bouguermouh, N. Bouzidi, L. Mahtout, L. Pérez-Villarejo, M.L. Martínez-Cartas, Effect of acid attack on microstructure and composition of metakaolin-based geopolymers: The role of alkaline activator, Journal of Non-Crystalline Solids 463, 128-137 (2017). DOI: https://doi.org/10.1016/j.jnoncrysol.2017.03.011
  • [29] S.A. Hadigheh, R.J. Gravina, S.T. Smith, Effect of acid attack on FRP-to-concrete bonded interfaces, Constr. Build. Mater. 152, 285-303 (2017). DOI: https://doi.org/10.1016/j.conbuildmat.2017.06.140
  • [30] M.R. Ahmad, B. Chen, S.F.A. Shah, Influence of different admixtures on the mechanical and durability properties of one-part alkali-activated mortars, Constr. Build. Mater. 265, 120320 (2020). DOI: https://doi.org/10.1016/j.conbuildmat.2020.120320
  • [31] T.A. Aiken, J. Kwasny, W. Sha, M.N. Soutsos, Effect of slag content and activator dosage on the resistance of fly ash geopolymer binders to sulfuric acid attack, Cem. Concr. Res. 111, 23-40 (2018). DOI: https://doi.org/10.1016/j.cemconres.2018.06.011
  • [32] W. Zhang, X. Yao, T. Yang, Z. Zhang, The degradation mechanisms of alkali-activated fly ash/slag blend cements exposed to sulphuric acid, Constr. Build. Mater. 186, 1177-1187 (2018). DOI: https://doi.org/10.1016/j.conbuildmat.2018.08.050
  • [33] V. Sata, A. Sathonsaowaphak, P. Chindaprasirt, Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack, Cem. Concr. Compos. 34 (5), 700-708 (2012). DOI: https://doi.org/10.1016/j.cemconcomp.2012.01.010
  • [34] P. Risdanareni, A. Hilmi, P.B. Susanto, The effect of foaming agent doses on lightweight geopolymer concrete metakaolin based, AIP Conference Proceedings 1835 (1), 020057 (2017). DOI: https://doi.org/10.1063/1.4983797
  • [35] P. Duan, C. Yan, W. Zhou, Influence of partial replacement of fly ash by metakaolin on mechanical properties and microstructure of fly ash geopolymer paste exposed to sulfate attack, Ceram. Int. 42 (2), 3504-3517 (2016). DOI: https://doi.org/10.1016/j.ceramint.2015.10.154
  • [36] O. Vogt, C. Ballschmiede, N. Ukrainczyk, E. Koenders, Evaluation of sulfuric acid-induced degradation of potassium silicate activated metakaolin geopolymers by semi-quantitative sem-edx analysis, Materials 13 (20), 1-23 (2020). DOI: https://doi.org/10.3390/ma13204522.
Uwagi
The author would like to acknowledge the support from the Fundamental Research Grant Scheme (FRGS) under a grant number of FRGS/1/2019/TK10/UNIMAP/02/21 from the ministry of Education Malaysia.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04325152-869d-4edb-a8e8-8418b79b2454
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.