PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biofouling on an Offshore Rig in the Baltic Sea

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Biofouling platformy wiertniczej na Morzu Bałtyckim
Języki publikacji
EN PL
Abstrakty
EN
Biofouling is called “lessons from nature”. Currently, governments and industry spend more than 5.7 billion USD annually to control unwanted marine biofouling, aquatic flora and fauna on submerged construction leading to various technical, economical, and ecological problems. In turn, the Baltic Sea is defined as a “time machine” for the future coastal ocean, as processes occurring in the Baltic Sea are related to future changes. Our study describes the biofouling community at 12 sites located at different depths on the legs of the “Baltic Beta” oil platform that resulted in finding a maximum of 1,300 individuals on 400 cm2. We analyzed: spatial distribution of dominant marine organisms living on a steel platform surface, their abundance and mass. Our work showed no significant difference in the benthic samples mass among different depths or cardinal directions of the rig columns. Our research can help to predict offshore biofouling on other devices in the Baltic Sea, to control invasive species and to estimate environmental load.
PL
Biofouling potocznie nazywany jest "lekcją od natury”. Obecnie rządy i przemysł wydają ponad 5,7 miliarda USD rocznie, aby kontrolować biofouling w morzach i oceanach, który stanowi nagromadzenie fauny i flory na podwodnych konstrukcjach, co w efekcie prowadzi do różnych problemów technicznych i ekologicznych. Natomiast Morze Bałtyckie jest definiowane jako "wehikuł czasu”, ponieważ zmiany w nim zachodzące aktualnie stanowią odzwierciedlenie przyszłych zmian środowiskowych w innych regionach morskich i oceanicznych. Nasze badania przedstawiają zbiorowiska makrobentosu pobranego z 12 lokalizacji położonych na różnych głębokościach nóg platformy wiertniczej "Baltic Beta”. Zidentyfikowaliśmy maksymalnie do 1300 osobników na 400 cm2. Przeanalizowaliśmy: przestrzenne rozmieszczenie dominujących organizmów morskich żyjących na stalowej powierzchni platformy, ich liczebność i masę. Badania nie wykazały znaczących różnic w masie próbek bentosowych pomiędzy różnymi głębokościami i kierunkami geograficznymi. Nasze badania mogą pomóc w przewidywaniu rozwoju biofoulingu na innych urządzeniach w Morzu Bałtyckim, identyfikacji występowania gatunków inwazyjnych i oszacowaniu obciążenia konstrukcji podwodnych.
Rocznik
Tom
Strony
41--56
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Empty Spaces Research in Pruszcz Gdański, Poland
  • Lotos Petrobaltic S.A in Gdańsk, Poland
  • Gdansk University of Technology, Department of Electrochemistry, Corrosion and Materials Engineering in Gdańsk, Poland
  • Gdansk University of Technology, Department of Electrochemistry, Corrosion and Materials Engineering in Gdańsk, Poland
  • University of Łódź, Department of Invertebrate Zoology and Hydrobiology in Lódź, Poland
  • University of Gdansk, Evolutionary Genetics and Biosystematics in Gdańsk
  • University of Gdansk, Department of Marine Plankton Research in Gdynia
Bibliografia
  • 1. Miller RG, Macleod, AK. Marine growth mapping and monitoring: feasibility of predictive mapping of marine growth. A report by SAMS Research Services Ltd to the Offshore Renewable Energy Catapult, Glasgow, UK, 2016; 51;
  • 2. ORJIP “ORJIP Ocean Energy: The Forward Look; an Ocean Energy Environmental Research Strategy for the UK (Report No. P627)”, Report by Aquatera Ltd. Report for the Crown Estate, 2015;
  • 3. Connell SD. Urban structures as marine habitats: an experimental comparison of the composition and abundance of subtidal epibiota among pilings, pontoons and rocky reefs. Marine Environmental Research 2001; 52:115-125. DOI 10.1016/s0141-1136(00)00266-x;
  • 4. Svane I, Petersen JK. On the problems of epibioses, fouling and artificial reefs, a review. Marine Ecology-Pubblicazioni Della Stazione Zoologica Di Napoli I. 2001; 22:169-188. DOI 10.1046/j.1439-0485.2001.01729.x;
  • 5. Knott NA, Underwood AJ, Chapman MG, Glasby TM. Epibiota on vertical and on horizontal surfaces on natural reefs and on artificial structures. Journal of the Marine Biological Association of the United Kingdom 2004; 84:1117-1130. DOI 10.1017/s0025315404010550h;
  • 6. Petersen JK, Malm T. Offshore windmill farms: Threats to or possibilities for the marine environment. Ambio 2006 35: 75-80. DOI 10.1579/0044-7447(2006)35;
  • 7. Whomersley P, Picken GB. Long-term dynamics of fouling communities found on offshore installations in the North Sea. Journal of the Marine Biological Association of the United Kingdom 2003; 83:897-901. DOI 10.1017/s0025315403008014h;
  • 8. Wilhelmsson D, Malm T. Fouling assemblages on offshore wind power plants and adjacent substrata. Estuarine Coastal and Shelf Science 2006; 79:459-466. DOI 10.1016/j.ecss.2008.04.020;
  • 9. Beech IB, Sunner J. Biocorrosion: towards understanding interactions between biofilms and metals. Current Opinion Biotechnology 2004; 15:181–186. DOI 10.1016/j.copbio.2004.05.001;
  • 10. Miller RG, Macleod AK. Marine Growth Mapping and Monitoring: Feasibility of Predictive Mapping of Marine Growth. A report by SAMS Research Services Ltd to the Offshore Renewable Energy Catapult. Glasgow, UK, 2016; 51;
  • 11. DNV-Design of Offshore Wind Turbine Structures. Offshore Standard DNV-OS-J101 2014;
  • 12. Eashwar M, Subramanian G, Chandrasekaran P, Manickam ST, Maruthamuthu S, Balakrishnan K. The interrelation of cathodic protection and marine macrofouling. Biofouling 1995; 8(4):303-312. DOI 10.1080/08927019509378283;
  • 13. Mallat C, Corbett A, Harris G, Lefranc M. Marine Growth on North Sea Fixed Steel Platforms: Insights From the Decommissioning Industry. in: ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers; 2014. DOI 10.1115/omae2014-23352;
  • 14. Forteath NR, Picken GB, Ralph R, William J. Marine growth studies on the North Sea oil. Marine Ecology - Progress Series 1982; 8:61-68. DOI 10.3354/meps008061;
  • 15. Langhamer O, Wilhelmsson D, Engstrőm J. Artificial reef effect and fouling impacts on offshore wave power foundations and buoys - a pilot study. Estuarine Coastal and Shelf Science 2009; 82(3):426-432. DOI 10.1016/j.ecss.2009.02.009;
  • 16. Mallat C, Corbetta A, Harris G, Lefranc M. Marine growth on North Sea fixed steel platforms: insights from the decommissioning industry. 33rd International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers 2014; DOI 10.1115/omae2014-23352;
  • 17. Bohonak AJ. Dispersal, gene flow, and population structure. The Quarterly Review of Biology 1999; 74:21e45. DOI 10.1086/392950;
  • 18. Langhamer O. Colonization of blue mussels (Mytilus edulis) on offshore wave power installations. in: Biofouling: Types, Impact and Anti-Fouling Editors: Jun Chan and Shing Wong; 2010: 14;
  • 19. Crisp DJ. Overview of research on marine invertebrate larvae, 1940-1980. in: Tipper RC (Eds.), Marine Biodeterioration: An Interdisciplinary Study. Annapolis, Maryland: Naval Institute Press 1984; 103-127. DOI 10.1007/978-1-4615-9720-9_15;
  • 20. Freeman JH. The marine fouling of fixed offshore installations. Dept. of Energy, Offshore Technology Paper 1977; 1:1-16;
  • 21. Goodman KS, Ralph R. The marine growth industry. Offshore Engineering 1979; 113-117;
  • 22. Ralph R, Troake RP. Marine growth on North Sea oil and gas platforms. in: 12th. Annual Offshore Technology Conference 1980; 4:49-51. DOI 10.4043/3860-ms;
  • 23. Ralph R, Goodman KS, Picken G. Marine growth corrosion problems: the need for a central information unit. in: Symposium on marine corrosion on offshore structures, Society of Chemical Industry's Aberdeen Section and Materials Preservation Group 1981; 63-70. 1981. DOI10.1016/j.marstruc.2020.102881;
  • 24. Bałazy B, Copeland U, Sokołowski A. Shipwrecks and underwater objects of southern Baltic – Hard substrata islands in the brackish, soft bottom marine environment. Estuarine, Coastal and Shelf Science 2019; 225:106240. DOI 10.1016/j.ecss.2019.05.022;
  • 25. Sokołowski A, Ziółkowska M, Bałazy P, Plichta I, Kukliński P, Mudrak-Cegiołka S. Recruitment pattern of benthic fauna on artificial substrates in brackish low-diversity system (the Baltic Sea). Hydrobiologia 2016; 784:125–141. DOI 10.1007/s10750-016-2862-z;
  • 26. Sokołowski A, Ziółkowska M, Bałazy P, Kukliński P, Plichta I. Seasonal and multi-annual patterns of colonisation and growth of sessile benthic fauna on artificial substrates in the brackish low-diversity system of the Baltic Sea. Hydrobiologia 2017; 790:183–200. DOI 10.1007/s10750-016-3043-9;
  • 27. Witalis B, Iglikowska A, Ronowicz M, Kukliński P. Biodiversity of epifauna in the ports of Southern Baltic Sea revealed by study of recruitment and succession on artificial panels. Estuarine, Coastal and Shelf Science 2021; 249:107107. DOI 10.1016/j.ecss.2020.107107;
  • 28. Reusch T, Dierking J, Andersson H, Bonsdorff E, Carstensen J, Casini M.et al. The Baltic Sea: a time machine for the future coastal ocean. Science Advances 2018; DOI 10.1126/sciadv.aar8195;
  • 29. Johannesson K, Andre C. Invited review: life on the margin: genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea. Molecular Ecology 2006; 15:2013e2029. DOI 10.1111/j.1365-294x.2006.02919.x;
  • 30. Johannesson K, Smolarz K, Grahn M, Andre C. The future of Baltic Sea populations: local extinction or evolutionary rescue? AMBIO: Journal Of the Human-Environmental System 2011; 40:179-190. DOI10.1007/s13280-010-0129-x;
  • 31. Larsson J, Lind EE, Corell H, Grahn M, Smolarz K, Lönn M. Regional genetic differentiation in the blue mussel from the Baltic Sea area. Estuarine, Coastal and Shelf Science 2017; 195: 98-109. DOI 10.1016/j.ecss.2016.06.016;
  • 32. Coolen JWP, Boon AR, Crooijmans R, van Pelt H, Kleissen F, Gerla D, et al. Marine stepping-stones: Connectivity of Mytilus edulis populations between offshore energy installations. Molecular Ecology 2020; 29:686–703. DOI 10.1111/mec.15364;
  • 33. Ojaveer H, Jaanus A, Mackenzie BR, Martin G, Olenin S, Radziejewska T. et al. Status of biodiversity in the Baltic Sea. PLOS ONE 2010; 5:e12467. DOI 10.1371/journal.pone.0012467;
  • 34. Ojaveer H, Olenin S, Narscius A, Florin AB, Ezhove E, Gollasch E,et al. Dynamics of biological invasions and pathways over time: A case study of a temperate coastal sea. Biological Invasions 2017; 19:799–813. DOI 10.1007/s10530-016-1316-x;
  • 35. Janus U, Kendzierska H. Benthic non-indigenous species among indigenous species and their habitat preferences in Puck Bay (southern Baltic Sea). Oceanologia 2014; 56(3):603–628 DOI 10.5697/oc.56-3.603;
  • 36. Carstensen J, Andersen HJ, Gustafsson BH, Conley DJ. Deoxygenation of the Baltic Sea during the last century. Proceedings of the National Academy of Sciences of the United States of America, PNAS 2014; 111:5628–5633. DOI 10.1073/pnas.1323156111;
  • 37. Dziubański A, Szaniawska A. Short-term study on the early succession stages of fouling communities in the coastal zone of Puck Bay (southern Baltic Sea). Oceanological and Hydrobiological Studies 2010. 39(4);3-16. DOI 10.2478/v10009-010-0055-z;
  • 38. Minnhagen S.Farming of blue mussels in the Baltic Sea. A review of pilot studies. Kalmar municipality, 2017;
  • 39. Laihonen P, Furman ER. The site of settlement indicates commensalism between bluemussel and its epibiont. Oecologia 1986; 71: 38-40. DOI 10.1007/bf00377317;
  • 40. Rainbow PS, Fialkowski W, Sokolowski A, Smith BD, Wolowicz M.Geographical and seasonal variation of trace metal bioavailabilities in the Gulf of Gdansk, Baltic Sea using mussels (Mytilus trossulus) and barnacles (Balanus improvisus) as biomonitors. Marine Biology 2004; 144:271–286. DOI 10.1007/s00227-003-1197-2;
  • 41. McLachlan A, Lombard HW, Louwrens S. Trophic structure and biomass distribution on 2 East Cape Rocky Shores. South African Journal of Zoology 1981; 16:85-89. DOI 10.1080/02541858.1981.11447738;
  • 42. Rewicz T, Grabowski M, Tończyk G, Konopacka A, Bącela-Spychalska K., Gammarus tigrinus Sexton, 1939 continues its invasion in the Baltic Sea: first record from Bornholm (Denmark). BioInvasions Records 2019; 8. DOI 10.3391/bir.2019.8.4.14;
  • 43. Jędrasik J, Kowalewski M. Mean annual and seasonal circulation patterns and long-term variability of currents in the Baltic Sea. Journal of Marine Systems 2019; 193:1-26. DOI 10.1016/j.jmarsys.2018.12.011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-042c97c2-08a7-476d-ae30-1df91e37069e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.