Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Thiosemicarbazones : coordination properties in relation to biological activity
Języki publikacji
Abstrakty
Thiosemicarbazones are considered to be potential therapeutics, because they possess a broad range of biological properties including antitumor, antimalarial and antimicrobial activity. Generally, the tiosemicarbazones coordinate to the metal centre by means of an (N,S) bidentate mode, and when an additional coordinating group is present, more diversified binding modes can occur such as a tridentate (X,N,S) coordination fashion. The stability of the metal complexes formed with the tiosemicarbazoness strongly depends on the character of the metal ion, the X-donor atom of the additional functional group and the position and type of the substituents at the tiosemicarbazones. The most prominent representative of this family is the α(N)-heterocyclic Triapine (3-aminopyridine- 2-carbaldehyde thiosemicarbazone; 3-AP), which is currently undergoing different phase-I and -II clinical trials as an antitumor agent, and demonstrates promising activity. Triapine is a very strong inhibitor of ribonucleotide reductase, the rate determining enzyme in the supply of deoxyribonucleotides for DNA synthesis required for cell proliferation. The mechanism of action involves most probably the formation of an iron(II)–Triapine complex, which reacts with molecular oxygen to result in the generation of reactive oxygen species. Subsequently, these reactive oxygen species are responsible for the quenching of the active-site tyrosyl radical of ribonucleotide reductase required for the enzymatic activity. As a result, the coordination chemistry of iron complexes of tiosemicarbazones has been receiving considerable attention. This review describes the coordination chemistry of tiosemicarbazones, in particular analogs of Triapine. The coordination compounds of d-block elements are discussed with respect to their bonding and structures. Several of complexes are mononuclear, with distorted tetrahedral, square planar, square pyramid or octahedral as their common geometries. The metal-binding ability of STSC at physiological pH was compared and shown. Further, various biological applications with emphasis an anticancer activity of the ligands/complexes are discussed in brief so as to indicate the importance of ligands under consideration.
Wydawca
Czasopismo
Rocznik
Tom
Strony
449--467
Opis fizyczny
Bibliogr. 56 poz., schem., tab.
Twórcy
autor
- Uniwersytet Wrocławski, Wydział Chemii, ul. Joliot-Curie 14, 50-383 Wrocław
autor
- Uniwersytet Wrocławski, Wydział Chemii, ul. Joliot-Curie 14, 50-383 Wrocław
autor
- Uniwersytet Śląski w Katowicach, Instytut Chemii, Zakład Chemii Organicznej, ul. Szkolna 9, 40-006 Katowice
autor
- Uniwersytet Wrocławski, Wydział Chemii, ul. Joliot-Curie 14, 50-383 Wrocław
Bibliografia
- [1] E.A. Enyedy, N.V. Nagy, E. Zsigo, C.R. Kowol, V.B. Arion, B.K. Keppler, T. Kiss, Eur. J. Inorg. Chem., 2010, 1717.
- [2] D.S. Kalinowski, P. Quach, D.R. Richardson, Future Med. Chem., 2009, 1, 1143.
- [3] X.H. Du, C. Guo, E. Hansell, P.S. Doyle, C.R. Caffrey, T.P. Holler, J.H. McKerrow, F.E. Cohen, J. Med. Chem., 2002, 45, 2695.
- [4] R.B. de Oliveira, E.M. de Souza-Fagundes, R.P.P. Soares, A.A. Andrade, Eur. J. Med. Chem., 2008, 43, 1983.
- [5] IUPAC Nomenclature of Organic Compounds, R. Panico, W.H. Powell, J.C. Richer (Red.), Blackwell, London 1993.
- [6] J.S. Casas, M.S. Garcia-Tasende, J. Sordo, Coord. Chem. Rev., 2000, 209, 197.
- [7] A.I. Matesanz, P. Souza, Mini-Rev. Med. Chem., 2009, 9, 1389.
- [8] M.A. Ali, S.E. Livingstone, Coord. Chem. Rev., 1974, 13, 101.
- [9] P. Chellan, S. Nasser, L. Vivas, K. Chibale, G.S. Smith, J. Organomet. Chem., 2010, 695, 2225.
- [10] E.A. Enyedy, E. Zsigo, N.V. Nagy, C.R. Kowol, A. Roller, B.K. Keppler, T. Kiss, Eur. J. Inorg. Chem., 2012, 4036.
- [11] F.A. Cotton, Chemia nieorganiczna, Wydawnictwo Naukowe PWN, Warszawa 2002.
- [12] Y. Yu, D.S. Kalinowski, Z. Kovacevic, A.R. Siafakas, P.J. Jansson, C. Stefani, D.B. Lovejoy, P.C. Sharpe, P.V. Bernhardt, D.R. Richardson, J. Med. Chem., 2009, 52, 5271.
- [13] T.S. Lobana, R. Sharma, G. Bawa, S. Khanna, Coord. Chem. Rev., 2009, 253, 977.
- [14] E.A. Enyedy, M.F. Primik, C.R. Kowol, V.B. Arion, T. Kiss, B.K. Keppler, Dalton Trans., 2011, 40, 5895.
- [15] F. Bacher, O. Domotor, A. Chugunova, N.V. Nagy, L. Filipovic, S. Radulovic, E.A. Enyedy, V.B. Arion, Dalton Trans., 2015, 44, 9071.
- [16] C.R. Kowol, R. Trondl, P. Heffeter, V.B. Arion, M.A. Jakupec, A. Roller, M. Galanski, W. Berger, B.K. Keppler, J. Med. Chem., 2009, 52, 5032.
- [17] W.S. Wu, Y.L. Feng, Z. Kristallogr. New Cryst. Struct., 2003, 218, 529.
- [18] H. Beraldo, D. Gambino, Mini-Rev. Med. Chem., 2004, 4, 31.
- [19] J. Shim, N.R. Jyothi, N.A.M. Farook, Asian J. Chem., 2013, 25, 5838.
- [20] O. Koch, G. Stuttgen, Naunyn Schmiedebergs Arch. Pharmakol. Exp. Pathol., 1950, 210, 409.
- [21] E.M. Bavin, R.J.W. Rees, J.M. Robson, M. Seiler, D.E. Seymour, D. Suddaby, J. Pharm. Pharmacol., 1950, 2, 764.
- [22] L.E. Weller, H.M. Sell, R.Y. Gottshall, J. Am. Chem. Soc., 1954, 76, 1959.
- [23] P. Nunn, J. Porter, P. Winstanley, Trans. R. Soc. Trop. Med. Hyg., 1993, 87, 578.
- [24] G.D. Coxon, D. Craig, R.M. Corrales, E. Vialla, L. Gannoun-Zaki, L. Kremer, Synthesis, Plos One, 2013, 8.
- [25] D.J. Bauer, Stvincen, C.H. Kempe, P.A. Young, A.W. Downie, Am. J. Epidemiol., 1969, 90, 130.
- [26] D.C. Quenelle, K.A. Keith, E.R. Kern, Antiviral Res., 2006, 71, 24.
- [27] A. Walcourt, M. Loyevsky, D.B. Lovejoy, V.R. Gordeuk, D.R. Richardson, Int. J. Biochem. Cell Biol., 2004, 36, 401.
- [28] A. Chipeleme, J. Gut, P.J. Rosenthal, K. Chibale, Bioorg. Med. Chem., 2007, 15, 273.
- [29] S. Ayton, P. Lei, A.I. Bush, Free Radic. Biol. Med., 2013, 62, 76.
- [30] P.T. Francis, A.M. Palmer, M. Snape, G.K. Wilcock, J. Neurol. Neurosurg. Psychiatry, 1999, 66, 137.
- [31] C. Lambert, H. Beraldo, N. Lievre, A. Garnier-Suillerot, P. Dorlet, M. Salerno, J. Biol. Inorg. Chem., 2013, 18, 59.
- [32] D. Palanimuthu, R. Poon, S. Sahni, R. Anjum, D. Hibbs, H.Y. Lin, P.V. Bernhardt, D.S. Kalinowski, D.R. Richardson, Eur. J. Med. Chem., 2017, 139, 612.
- [33] L. Wei, J. Easmon, R.K. Nagi, B.D. Muegge, L.A. Meyer, J.S. Lewis, J. Nucl. Med., 2006, 47, 2034.
- [34] J.M. Shao, B.S. Zhou, A.J. Di Bilio, L.J. Zhu, T.L. Wang, C. Qi, J. Shih, Y. Yen, Mol. Cancer Ther., 2006, 5, 586.
- [35] M. Kolberg, K.R. Strand, P. Graff, K.K. Andersson, Biochim. Biophys. Acta - Proteins and Proteomics, 2004, 1699, 1.
- [36] A.C. Sartorelli, B.A. Booth, Cancer Res., 1967, 27, 1614.
- [37] C.M. Nutting, C.M.L. van Herpen, A.B. Miah, S.A. Bhide, J.P. Machiels, J. Buter, C. Kelly, D. de Raucourt, K.J. Harrington, 2009, 20, 1275.
- [38] J. Kolesar, R.C. Brundage, M. Pomplun, D. Alberti, K. Holen, A. Traynor, P. Ivy, G. Wilding, Cancer Chemother. Pharmacol., 2011, 67, 393.
- [39] R.A. Finch, M.C. Liu, S.P. Grill, W.C. Rose, R. Loomis, K.M. Vasquez, Y.C. Cheng, A.C. Sartorelli, Biochem. Pharm., 2000, 59, 983.
- [40] S. Wadler, D. Makower, C. Clairmont, P. Lambert, K. Fehn, M. Sznol, J. Clin. Oncol., 2004, 22, 1553.
- [41] C.A. Kunos, T. Radivoyevitch, J. Pink, S.M. Chiu, T. Stefan, J. Jacobberger, T.J. Kinsella, Radiat. Res., 2010, 174, 574.
- [42] J.C. Yalowich, X. Wu, R. Zhang, R. Kanagasabai, M. Hornbaker, B.B. Hasinoff, Biochem. Pharmacol., 2012, 84, 52.
- [43] S. Padhye, Z. Afrasiabi, E. Sinn, J. Fok, K. Mehta, N. Rath, Inorg. Chem., 2005, 44, 1154.
- [44] K.A. Price, P.J. Crouch, I. Volitakis, B.M. Paterson, S. Lim, P.S. Donnelly, A.R. White, Inorg. Chem., 2011, 50, 9594.
- [45] K.Y. Djoko, P.S. Donnelly, A.G. McEwan, Metallomics, 2014, 6, 2250.
- [46] M. Whitnall, J. Howard, P. Ponka, D.R. Richardson, Proc. Natl. Acad. Sci. U.S.A., 2006, 103,14901.
- [47] J. Yuan, D.B. Lovejoy, D.R. Richardson, Blood, 2004, 104, 1450.
- [48] D.B. Lovejoy, D.M. Sharp, N. Seebacher, P. Obeidy, T. Prichard, C. Stefani, M.T. Basha, P.C. Sharpe, P.J. Jansson, D.S. Kalinowski, P.V. Bernhardt, D.R. Richardson, J. Med. Chem., 2012, 55, 7230.
- [49] Z. Kovacevic, S. Chikhani, D.B. Lovejoy, D.R. Richardson, Mol. Pharmacol., 2011, 80, 598.
- [50] N.A. Seebacher, D.R. Richardson, P.J. Jansson, Br. J. Pharmacol., 2015, 172, 2557.
- [51] D.B. Lovejoy, P.J. Jansson, U.T. Brunk, J. Wong, P. Ponka, D.R. Richardson, Cancer Res., 2011, 71, 5871.
- [52] P.J. Jansson, D.S. Kalinowski, D.J.R. Lane, Z. Kovacevic, N.A. Seebacher, L. Fouani, S. Sahni, A.M. Merlot, D.R. Richardson, Pharmacol. Res., 2015, 100, 255.
- [53] D.S. Kalinowski, Y. Yu, P.C. Sharpe, M. Islam, Y.T. Liao, D.B. Lovejoy, N. Kumar, P.V. Bernhardt, D.R. Richardson, J. Med. Chem., 2007, 50, 3716.
- [54] D.R. Richardson, D.S. Kalinowski, S. Lau, P.J. Jansson, D.B. Lovejoy, Biochim. Biophys. Acta–General Subjects, 2009, 1790, 702.
- [55] N.T.V. Le, D.R. Richardson, Blood, 2004, 104, 2967.
- [56] B.A. Yoshida, M.M. Sokoloff, D.R. Welch, C.W. Rinker-Schaeffer, J. Natl. Cancer Inst., 2000, 92, 1717.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-042c0f36-c8f8-47dc-9c32-a7bbe5ac67d6