PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Desorption/ablation of lithium fluoride induced by extreme ultraviolet laser radiation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
PLASMA-2015 International Conference on Research and Applications of Plasmas (7-11 September 2015 ; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
The availability of reliable modeling tools and input data required for the prediction of surface removal rate from the lithium fluoridetargets irradiated by the intense photon beams is essential for many practical aspects. This study is motivated by the practical implementation of soft X-ray (SXR) or extreme ultraviolet (XUV) lasers for the pulsed ablation and thin fi lm deposition. Specifically, it is focused on quantitative description of XUV laser-induced desorption/ablation from lithium fluoride, which is a reference large band-gap dielectric material with ionic crystalline structure. Computational framework was proposed and employed here for the reconstruction of plume expansion dynamics induced by the irradiation of lithium fluoridetargets. The morphology of experimentally observed desorption/ablation craters were reproduced using idealized representation (two-zone approximation) of the laser fluence profile. The calculation of desorption/ablation rate was performed using one-dimensional thermomechanic model (XUV-ABLATOR code) taking into account laser heating and surface evaporation of the lithium fluoridetarget occurring on a nanosecond timescale. This step was followed by the application of two-dimensional hydrodynamic solver for description of laser-produced plasma plume expansion dynamics. The calculated plume lengths determined by numerical simulations were compared with a simple adiabatic expansion (blast-wave) model. The availability of reliable modeling tools and input data required for the prediction of surface removal rate from the lithium fluoridetargets irradiated by the intense photon beams is essential for many practical aspects. This study is motivated by the practical implementation of soft X-ray (SXR) or extreme ultraviolet (XUV) lasers for the pulsed ablation and thin fi lm deposition. Specifically, it is focused on quantitative description of XUV laser-induced desorption/ablation from lithium fluoride, which is a reference large band-gap dielectric material with ionic crystalline structure. Computational framework was proposed and employed here for the reconstruction of plume expansion dynamics induced by the irradiation of lithium fluoridetargets. The morphology of experimentally observed desorption/ablation craters were reproduced using idealized representation (two-zone approximation) of the laser fluence profile. The calculation of desorption/ablation rate was performed using one-dimensional thermomechanic model (XUV-ABLATOR code) taking into account laser heating and surface evaporation of the lithium fluoridetarget occurring on a nanosecond timescale. This step was followed by the application of two-dimensional hydrodynamic solver for description of laser-produced plasma plume expansion dynamics. The calculated plume lengths determined by numerical simulations were compared with a simple adiabatic expansion (blast-wave) model.
Czasopismo
Rocznik
Strony
131--138
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
  • Faculty of Mechanical Engineering, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava-Poruba, CZ 708 33, Czech Republic
autor
  • Faculty of Safety Engineering, VŠB-Technical University of Ostrava, Lumírova 13, Ostrava-Výškovice, CZ 700 30, Czech Republic, Tel.: +420 597 322 872, Fax: +420 597 322 980
autor
  • Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava-Poruba, CZ 708 33, Czech Republic
autor
  • Faculty of Safety Engineering, VŠB-Technical University of Ostrava, Lumírova 13, Ostrava-Výškovice, CZ 700 30, Czech Republic
  • J. Heyrovský Institute of Physical Chemistry ASCR, Dolejškova 3, Praha 8, CZ 182 23, Czech Republic
  • Faculty of Mechanical Engineering, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava-Poruba, CZ 708 33, Czech Republic
autor
  • Faculty of Safety Engineering, VŠB-Technical University of Ostrava, Lumírova 13, Ostrava-Výškovice, CZ 700 30, Czech Republic, Tel.: +420 597 322 872, Fax: +420 597 322 980
autor
  • Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava-Poruba, CZ 708 33, Czech Republic
autor
  • Institute of Physics ASCR, Na Slovance 2, Prague 8, CZ 182 21, Czech Republic
autor
  • Faculty of Safety Engineering, VŠB-Technical University of Ostrava, Lumírova 13, Ostrava-Výškovice, CZ 700 30, Czech Republic, Tel.: +420 597 322 872, Fax: +420 597 322 980
autor
  • J. Heyrovský Institute of Physical Chemistry ASCR, Dolejškova 3, Praha 8, CZ 182 23, Czech Republic
autor
  • J. Heyrovský Institute of Physical Chemistry ASCR, Dolejškova 3, Praha 8, CZ 182 23, Czech Republic
  • Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, Praha 8, CZ 180 00, Czech Republic
autor
  • Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, Praha 8, CZ 180 00, Czech Republic
Bibliografia
  • 1. Inogamov, N. A., Zhakhovsky, V. V., Faenov, A.Y., Khokhlov, V. A., Shepelev, V. V., Skobelev, I. V., Kato, J., Tanaka, M., Pikuz, T. A., Kishimoto, M., Ishino, M., Nishikino, M., Fukuda, Y., Bulanov, S. V., Kawachi, T., Petrov, Y. V., Anisimov, S. I., & Fortov, V. E. (2010). Spallative ablation of dielectrics by X-ray laser. Appl. Phys. A-Mater. Sci. Process., 101(1), 87–96. DOI:10.1007/s00339-010-5764-3.
  • 2. Faenov, A. Y., Inogamov, N. A., Zhakhovskii, V. V., Khokhlov, V. A., Nishihara, K., Kato, Y., Tanaka, M., Pikuz, T. A., Kishimoto, M., Ishino, M., Nishikino, M., Nakamura, T., Fukuda, Y., Bulanov, S. V., & Kawachi, T. (2009). Low-threshold ablation of dielectrics irradiated by picosecond soft x-ray laser pulses. Appl. Phys. Lett., 94, 231107. DOI: 10.1063/1.3152290.
  • 3. Inogamov, N. A., Faenov, A. Y., Zhakhovsky, V. V., Pikuz, T. A., Skobelev, I. Yu., Petrov, Yu. V., Khokhlov, V. A., Shepelev, V. V., Anisimov, S. I., Fortov, V. E., Fukuda, Y., Kando, M., Kawachi, T., Nagasono, M., Ohashi, H., Yabashi, M., Tono, K., Senda, Y., Togashi, T., & Ishikawa, T. (2011). Two-temperature warm dense matter produced by ultrashort extreme vacuum ultraviolet-free electron laser (EUV-FEL) pulse. Contrib. Plasma Phys., 51(5), 419–426. DOI: 10.1002/ctpp. 201110013.
  • 4. Ritucci, A., Tomassetti, G., Reale, A., Arrizza, L., Zuppella, P., Reale, L., Palladino, L., Flora, F., Bonfigli, F., Faenov, A., Pikuz, T., Kaiser, J., Nilsen, J., & Jankowski, A. F. (2006). Damage and ablation of large bandgap dielectrics induced by a 46.9 nm laser beam. Opt. Lett., 31(1), 68–70. DOI: 10.1364/OL.31.000068.
  • 5. George, S., Singh, R. K., Nampoori, V. P. N., & Kumar, A. (2013). Fast imaging of the laser-blow-off plume driven shock wave: Dependence on the mass and density of the ambient gas. Phys. Lett. A, 377(5),391–398. DOI: 10.1016/j.physleta.2012.11.058.
  • 6. Harilal, S. S., Bindhu, C. V., Tillack, M. S., Najmabadi, F., & Gaeris, A. C. (2003). Internal structure and expansion dynamics of laser ablation plumes into ambient gases. J. Appl. Phys., 93(5), 2380–2388.http://dx.doi.org/10.1063/1.1544070.
  • 7. Itina, T. E., Katassonov, A. A., Marine, W., & Autric, M. (1998). Numerical study of the role of a background gas and system geometry in pulsed laser deposition. J. Appl. Phys., 83(11), 6050–6054. DOI:10.1063/1.367995.
  • 8. Harilal, S. S., Miloshevsky, G. V., Diwakar, P. K., LaHaye, N. L., & Hassanein, A. (2012). Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere. Phys. Plasmas, 19(8), 083504. DOI: 10.1063/1.4745867.
  • 9. Haglund, R. F. (1996). Microscopic and mesoscopic aspects of laser-induced desorption and ablation. Appl. Surf. Sci., 96/98, 1–13. DOI: 10.1016/0169-4332(95)00371-1.
  • 10. Chalupsky, J., Juha, L., Hajkova, V., Cihelka, J., Vyšĺn, L., Gautier, J., Hajdu, J., Hau-Riege, S. P., Jurek, M., Krzywinski, J., London, R. A., Papalazarou, E., Pelka, J. B., Rey, G., Sebban, S., Sobierajski, R., Stojanovic, N., Tiedtke, K., Toleikis, S., Tschentscher, T., Valentin, C., Wabnitz, H., & Zeitoun, P. (2009). Non-thermal desorption/ablation of molecular solids induced by ultra-short soft x-ray pulses. Opt. Express, 17(1), 208–217. DOI: 10.1364/OE.17.000208.
  • 11. Henley, S. J., Ashfold, M. N. R., & Pearce, S. R. J. (2003). The structure and composition of lithium fluoride films grown by off-axis pulsed laser ablation. Appl. Surf. Sci., 217(1/4), 68–77. DOI: 10.1016/S0169-4332(03)00583-X.
  • 12. Pira, P., Burian, T., Vysin, L., Chalupský, J., Lančok, J., Wild, J., Střižík, M., Zelinger, Z., Rocca, J. J., & Juha, L. (2011). Ablation of ionic crystals induced by capillary-discharge XUV laser. Proc. SPIE, 8077, 807719. DOI: 10.1117/12.890406.
  • 13. Heinbuch, S., Grisham, M., Martz, D., & Rocca, J. J. (2005). Demonstration of a desk-top size high repetition rate soft x-ray laser. Opt. Express, 13(11), 4050–4055. DOI: 10.1364/OPEX.13.004050.
  • 14. Anderson, A. T. (1996). X-ray ablation measurements and modeling for ICF applications. Doctoral dissertation, University of California, Berkeley.
  • 15. Juha, L., Bittner, M., Chvostova, D., Letal, V., Krasa, J., Otcenasek, Z., Kozlova, M., Polan, J., Präg, A. R., Rus, B., Stupka, M., Krzywinski, J., Andrejczuk, A., Pelka, J. B., Sobierajski, R., Ryc, L., Feldhaus, J., Boody, F. P., Grisham, M. E., Vaschenko, G. O., Menoni, C. S., & Rocca, J. J. (2005). XUV-laser induced ablation of PMMA with nano-, pico-, and femtosecond pulses. J. Electron. Spectrosc., 144/147, 929–932.DOI: 10.1016/j.elspec.2005.01.258.
  • 16. Ferziger, J. H., & Peric, M. (2002). Computational methods for fluid dynamics. Berlin: Springer.
  • 17. Geohegan, D. B. (1992). Physics and diagnostics of laser ablation plume propagation for high-Tc superconductor film growth. Thin Solid Films, 220(1/2), 138–145. DOI: 10.1016/0040-6090(92)90562-P.
  • 18. Dyer, P. E., Issa, A., & Key, P. H. (1990). An investigation of laser ablation and deposition of Y-Ba-Cu-O in an oxygen environment. Appl. Surf. Sci., 46(1/4), 89–95. DOI: 10.1016/0169-4332(90)90125-J.
  • 19. Zbroniec, L., Sasaki, T., & Koshizaki, N. (2002). Laser ablation of iron oxide in various ambient gases. Appl. Surf. Sci., 197/198, 883–886. DOI: 10.1016/S0169-4332(02)00444-0.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-042a17af-d3c8-4b0e-bfd2-93e4aa650c06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.