PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of the Ignition of MTV Decoy Flares

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mg/Teflon®/Viton (MTV) flares are the pyrotechnic compositions used in infrared decoys to protect aerial targets from IR-guided missiles. In this study, the influence of formulation changes on the burning time, and on the time to reach the required level of intensity of infrared radiation was examined. An ignition, in particular the quantity of ignition mixture used, and the ignition surface has a significant influence on the tested parameters. For charges with a density of 1.7 g/cm3 and a mass of approx. 40 g, it was possible to obtain the required rise time and intensity of radiation after applying about 5 g of the igniting mixture. The ratio of the grooved area, with the ignition mixture on the lateral surface of the pellet, to the total lateral surface of the pellet was approx. 0.6.
Słowa kluczowe
Rocznik
Strony
529--544
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Military Institute of Armament Technology, 7 Prymasa Stefana Wyszyńskiego Street, 05-220 Zielonka, Poland
autor
  • Military Institute of Armament Technology, 7 Prymasa Stefana Wyszyńskiego Street, 05-220 Zielonka, Poland
  • Military Institute of Armament Technology, 7 Prymasa Stefana Wyszyńskiego Street, 05-220 Zielonka, Poland
  • Air Force Institute of Technology, 6 Księcia Bolesława Street, 01-494 Warsaw, Poland
  • Air Force Institute of Technology, 6 Księcia Bolesława Street, 01-494 Warsaw, Poland
  • Łukasiewicz Research Network - Institute of Industrial Organic Chemistry, 6 Annopol Street, 03-236 Warsaw, Poland
Bibliografia
  • [1] Mahulikar, S.P; Rao, G.A.; Sonawane, H.R.; Prasad, H.S.S. Infrared Signature Studies of Aircraft and Helicopters. Proc. Progress in Electromagnetics Research Symp. 2009, Vol. 1, Moscow, Russia, 2009, 15-19.
  • [2] Mahulikar, S.P.; Rao, G.A.; Sane, S.K.; Marath, A.G. Aircraft Plume Infrared Signature in Nonafterburning Mode. J. Thermophys. Heat Transf. 2005, 19(3): 413-415.
  • [3] Rohacs, J.; Jankovics, I.; Gal, I.; Bakunowicz, J.; Mingione, G.; Carozza, A. Small Aircraft Infrared Radiation Measurements Supporting the Engine Airframe Aerothermal Integration. Period. Polytech. Transp. Eng. 2019, 47(1): 51-63.
  • [4] Clancy, T. Fighter Wing: A Guided Tour of an Air Force Combat Wing. Vol. 3, Penguin Books, 2007.
  • [5] Koch, E-C.; Dochnahl, A. Investigation of Combustion Process in Magnesium Teflon/Viton (MTV) Compositions by Emission Spectroscopy. Proc. 30th Int. Annual Conf., Karlsruhe, Germany, 1999, P-87.
  • [6] Koch, E. Review on Pyrotechnic Aerial Infrared Decoys. Propellants Explos. Pyrotech. 2001, 26(1): 3-11.
  • [7] Koch, E.; Hahma, A.; Weiser, V.; Roth, E.; Knapp, S. Metal-fluorocarbon Pyrolants. XIII: High Performance Infrared Decoy Flare Compositions Based on MgB2 and Mg2Si and Polytetrafluoroethylene/Viton®. Propellants Explos. Pyrotech. 2012, 37(4): 432-438.
  • [8] The Infrared & Electro-Optical Systems Handbook. Countermeasure Systems. Vol. 7, (Pollock, D.H.; Accetta, J.S.; Shumaker, D.L., Eds). Ann Arbor: MI, Infrared Information and Analysis Center and Bellington, WA, SPIE Optical Engineering Press, 1993.
  • [9] Koch, E.; Dochnahl, A. IR Emission Behaviour of Magnesium/Teflon/Viton (MTV) Compositions. Propellants Explos. Pyrotech. 2000, 25(1): 37-40.
  • [10] Hahn, G.T.; Rivette, P.G.; Weldon, R.G. Infra-red Tracking Flare. US Patent 5679921, 1997.
  • [11] Douda, B.E. Genesis of Infrared Decoy Flares. The Early Years from 1950 into the 1970s. NSWC/CCR/RDTR-08/63. Crane, IN, 2009.
  • [12] Earle, M.D. Infrared Countermeasures Techniques. In: Electronic Countermeasures. (Boyd, J.A.; Harris, D.B.; King, D.D.; Welch H.W., Eds) Los Altos Hills, CA, Peninsula Publishing, 1978.
  • [13] de Yong, L.V.; Smit, K.J. A Theoretical Study of the Combustion of Magnesium/Teflon/Viton Pyrotechnic Compositions. Materials Research Laboratory, Technical Report MPL-TR-91-25. Marybirnong, Victoria, Australia, 1991.
  • [14] Peretz, A. Investigation of Pyrotechnic MTV Compositions for Rocket Motor Igniters. J. Spacecr. Rockets 1984, 21(2): 222-224.
  • [15] Elsaidy, A.; Kassem, M.; Tantawy, H.; Elbasuney, S. The Infrared Spectra of Customized Magnesium/Teflon/Viton (MTV) Decoy Flares to Thermal Signature of Jet Engine. Proc. 17th Int. Conf. Aerospace Sciences and Aviation Technology. Cairo, Egypt, 2017, paper ASAT-17-103-CA.
  • [16] Elbasuney, S.; Elsaidy, A.; Kassem, M.; Tantawy, H.; Sadek, R.; Fahd, A. Infrared Spectra of Customized Magnesium/Teflon/Viton Decoy Flares. Combust. Explos. Shock Waves 2019, 55(5): 599-605.
  • [17] Du, J.; Guan, H.; Li, J. Effects of Magnesium Powder on the Radiation Characteristics of MTV Foil Infrared Decoys. Cent. Eur. J. Energ. Mater. 2015, 12(4): 855-863.
  • [18] Kubota, N.; Serizawa, C. Combustion of Magnesium/Polytetrafluoroethylene. J. Propuls. Power. 1987, 3(4): 303-307.
  • [19] Adhikary, S.; Sekhar, H.; Thakur, D.G. Investigations of Process Parameters on the Mechanical Properties of MTV Decoy Flare Pellets for Defence Applications. Procedia Structural Integrity 2019, 14: 127-133.
  • [20] Adhikary, S.; Sekhar, H.; Thakur, D.G. Performance Evaluation of Mechanically Pressed Magnesium/Teflon/Viton (MTV) Decoy Flare Pellets. Sadhana 2020, 45(45): 1-6.
  • [21] Adhikary, S.; Sekhar, H.; Thakur, D.G. Optimization of Compressive Strength of MTV Decoy Flare Pellets by Taguchi Method. Particul. Sci. Technol. 2020, (March): 1-6.
  • [22] Adhikary, S.; Sekhar, H.; Thakur, D.G. Optimization of Density of Infra-red Decoy Flare Pellets by Taguchi Method. Sadhana 2019, 44(160): 1-9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04289416-771f-4687-bb95-a7c2c87985a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.