PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A time-domain pulse amplitude and width discrimination method for photon counting

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work shows a time-domain method for the discrimination and digitization of parameters of voltage pulses coming from optical detectors, taking into account the presence of electronic noise and afterpulsing. Our scheme is based on an FPGA-based time-to-digital converter as well as an adjustable-threshold comparator complemented with commercial elements. Here, the design, implementation and optimization of a multiphase TDC using delay lines shorter than a single clock period is also described. The performance of this signal processing system is discussed through the results from the statistical code density test, statistical distributions of measurements and information gathered from an optical detector. Unlike dual voltage threshold discriminators or constant-fraction discriminators, the proposed method uses amplitude and time information to define an adjustable discrimination window that enables the acquisition of spectra.
Rocznik
Strony
269--282
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr., wzory
Twórcy
  • Universidad Pontificia Bolivariana, Centro de Ciencia Básica, Grupo de Óptica y Espectroscopía, Circular 1 70-01, Medellín, Colombia
autor
  • Universidad Pontificia Bolivariana, Centro de Ciencia Básica, Grupo de Óptica y Espectroscopía, Circular 1 70-01, Medellín, Colombia
Bibliografia
  • [1] Becker, W. (2005). Advanced time-correlated single photon counting techniques. Berlin: Springer, 11.
  • [2] Ripamonti, G., Abba, A., Geraci, A. (2010). High frequency, high time resolution time-to-digital converter employing passive resonating circuits. Rev. Sci. Instrum., 81(5), 054705.
  • [3] Ghioni, M., Cova, S., Samori, C., Zappa, F. (1997). True constant fraction trigger circuit for picosecond photon-timing with ultrafast microchannel plate photomultipliers. Rev. Sci. Instrum., 68(5), 2228.
  • [4] Restelli, A., Abbiati, R., Geraci, A. (2005). Digital field programmable gate array-based lock-in amplifier for high-performance photon counting applications. Rev. Sci. Instrum., 76(9), 093112.
  • [5] Yonggang, W., Xinyi, C., Deng, L., Wensong, Z., Chong, L. (2014). A Linear Time-Over-Threshold Digitizing Scheme and Its 64-channel DAQ Prototype Design on FPGA for a Continuous Crystal PET Detector. IEEE Trans. Nucl. Sci., 61(1), 99-106.
  • [6] Wu, J., Shi, Z. (2008). The 10-ps wave union TDC: Improving FPGA TDC resolution beyond its cell delay. 2008 IEEE Nucl. Sci. Symp. Conf., Dresden, Germany, 3440-3446.
  • [7] Favi, C., Charbon, E. (2009). A 17ps time-to-digital converter implemented in 65nm FPGA technology. Proc. of the ACM/SIGDA international symposium, Monterey, United States, 113-120.
  • [8] Fishburn, M., Menninga, L.H., Favi, C., Charbon, E. (2013). A 19.6 ps, FPGA-Based TDC With Multiple Channels for Open Source Applications. IEEE Trans. Nucl. Sci., 60(3), 2203-2208.
  • [9] Wang, J., Liu, S., Shen, Q., Li, H., An, Q. (2010). A Fully Fledged TDC Implemented in Field-Programmable Gate Arrays. IEEE Trans. Nucl. Sci., 57(2), 446-450.
  • [10] Pałka, M., Moskal, P., Bednarski, T., et al. (2014). A novel method based solely on field programmable gate array (FPGA) units enabling measurement of time and charge of analog signals in positron emission tomography (PET). Bio-Algorithms and Med-Systems, 10(1), 41-45.
  • [11] Ugur, C., Koening, W., Michel, J., Pałka, M., Traxler, M. (2013). Field programmable gate array based data digitisation with commercial elements. J. Inst., 8(1), C01035.
  • [12] Wu, J. (2013). A digitization scheme of sub-microampere current using a commercial comparator with hysteresis and FPGA-based wave union TDC. J. Inst., 8(1), C01019.
  • [13] Xi, D., Kao, C.M., Liu, W., Zeng, C., Liu, X., Xie, Q. (2013). FPGA-Only MVT Digitizer for TOF PET. IEEE Trans. Nucl. Sci., 60(5), 3253-3261.
  • [14] Bencivenni, G., Czerwinski, E., de Lucia, E., et al. (2013). A Time Domain Reflectometer with 100 ps precision implemented in a cost-effective FPGA for the test of the KLOE-2 Inner Tracker readout anodes. Nucl. Instrum. Methods Phys. Res. A., 698, 185-191.
  • [15] Vyhlídal, D., Jelínek, M.,Čech, M., Kubeček, V., Tománek, P., Senderáková, D., Páta, P. (2011). Performance evaluation of fast, high precision laser rangefinder electronics with a pulsed laser. Photonics Prague 2011: SPIE, 2011, Prague, Czech Republic, 83060D.
  • [16] Maruyama, Y., Blacksberg, J., Charbon, E. (2014). A 1024x8, 700-ps Time-Gated SPAD Line Sensor for Planetary Surface Exploration With Laser Raman Spectroscopy and LIBS. IEEE J. Solid-State Circuits, 49(1), 179-189.
  • [17] Nutt, R. (1968). Digital Time Intervalometer. Rev. Sci. Instrum., 39(9), 1342.
  • [18] Szplet, R., Kalisz, J., Jachna, Z. (2009). A 45 ps time digitizer with a two-phase clock and dual-edge two-stage interpolation in a field programmable gate array device. Meas. Sci. Technol., 20(2), 025108.
  • [19] Hervé, C., Cerrai, J., Le Caër, T. (2012). High resolution time-to-digital converter (TDC) implemented in field programmable gate array (FPGA) with compensated process voltage and temperature (PVT) variations. Nucl. Instrum. Methods Phys. Res. A., 682, 16-25.
  • [20] Loffredo, S. (2010). Design, construction and tests of a high resolution, high dynamic range Time to Digital Converter. Ph. D. Dissertation. Università degli studi Roma Tre, Rome.
  • [21] Ibid, 47-53.
  • [22] Ibid, 89-91.
  • [23] Spartan-6 FPGA Datasheet. Documentation for Xilinx. DS162 (v 3.1.1). CLB Switching Characteristics (SLICEM Only). https://www.xilinx.com/support/documentation/data_sheets/ds162.pdf. (Nov. 2017).
  • [24] Aloisio, A., et al. (2008). FPGA implementation of a high-resolution time-to-digital converter. 2007 Nuclear Science Symposium Conference Record, Honolulu, United States.
  • [25] Hu, X., Zhao, L., Liu, S., Wang, J., An, Q. (2013). A Stepped-Up Tree Encoder for the 10-ps Wave Union TDC. IEEE Trans. Nucl. Sci., 60(5), 3544-3549.
  • [26] Tune Gaussian Mixture Models. MATLAB Tutorial. http://www.mathworks.com/help/stats/tune-gaussian-mixture-models.html. (Sep. 2017).
  • [27] Spartan-6 FPGA Clocking Resources. Documentation for Xilinx. UG382 (v 1.10). https://www.xilinx.com/support/documentation/user_guides/ug382.pdf. (Sep. 2017).
  • [28] Baek, S.J., Park, A., Kim, J., Shen, A., Hu, J. (2009). A simple background elimination method for Raman spectra. Chemometrics and Intelligent Laboratory Systems, 98(1), 24-30.
Uwagi
EN
1. The authors thank Jean-Pierre Galaup from the Aimé Cotton Laboratory at the CNRS for providing valuable feedback throughout this work, and Angel Salazar from Universidad Pontificia Bolivariana for fruitful discussions. Also, we acknowledge the financial support given by Colciencias for the junior researcher grants awarded during 2013 and 2014, and Universidad Pontificia Bolivariana for the scholarship to pursue graduate studies.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0424b41c-50f7-4226-ba23-eb63fe83ea08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.