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Abstract. In the framework of the Matrix Product States representation the effect of a sudden 

quench of the uniaxial anisotropy on the time evolution of the Haldane state has been 

investigated. The existence of the non-vanishing string correlations in the limit of a large 

distance in the Haldane phase has been verified. The overlap of the initial and time-evolved 

states, the so-called Loschmidt echo, has been investigated. 
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Introduction 

Recent research with ultracold atoms in optical lattices has opened the experi-

mental way to investigate the ground state and dynamical properties of magnetic 

chains [1]. A great deal of interest in one-dimensional (d = 1) AF Heisenberg chains 

has been originated by Haldane’s conjecture that d = 1 quantum Heisenberg anti-

ferromagnets have qualitatively different properties according to whether the spin 

value is an integer or a half-integer. The elementary excitation spectrum of such 

a system with integer spin is gapful, whereas for the system with a half-integer spin 

is gapless [2]. 

The S = 1 antiferromagnetic Heisenberg chain is governed by the following 

Hamiltonian: 
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where the parameter J is an exchange coupling constant. In order to study the 

ground-state magnetization dynamics we have considered the chain with N = 102 

sites and open boundary conditions. 

It is known that to construct the ground state of the Hamiltonian (1) each origi-

nal S = 1 spin can be written as two S = 1/2 spins in a triplet state. Based on them 

the ground state, the so-called, valence-bond-state can be built [3, 4]. However, 

when we are dealing with an open chain, two effective free S = 1/2 spins appear 
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at the ends and the ground state is split into four states converging to the same 

ground state as the length of the chain tends to infinity [3]. But when both S = 1 

spins at the ends are replaced by the S = 1/2 spins a nonzero energy gap between 

the singlet ground state and the first excited state is restored. For this reason, such 

an approach was adopted in the current paper. 

Besides exhibiting the famed Haldane gap, the S = 1 AF Heisenberg chain has 

been found to have other surprising features. First, due to the existence of a finite 

energy gap above the ground state, the spin-spin correlations should decay expo-

nentially. Second, there is a form of non-local hidden order, the antiferromagnetic 

alignment of ±1 spins after omitting all the sites with spin projection 0. It leads to 

the existence of the string order parameter O
α
 (α = x, y, z) that should be nonzero 

in the Haldane phase [5]. It is defined by the string correlation functions α kjO ,

 in the 

following way: 
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jŜh  is the α-th com-

ponent of the spin operator at the j-th site. 

In real systems, the magnetic uniaxial anisotropy can be created through the 

environment which implies adding the additional term 
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where D is the uniaxial anisotropy parameter. Depending on the sign the parameter 

D describes the system with an easy axis (negative D) or an easy plane (positive 

D). When the uniaxial anisotropy is taken into account, the Haldane phase was 

found to exist between D ∼ − 0.2 and D ∼ 1 [6]. 

In order to investigate the ground state and its dynamical properties after a sudden 

quantum quench, the Matrix Product States (MPS) formalism has been employed 

[7, 8]. The MPS formalism is especially appropriate for the study of gapped systems. 

Assume that the initial quantum state |ψ0〉 is the ground state of the Hamiltonian HJ . 

For t > 0 the time evolution is governed by the anisotropic Hamiltonian H = HJ + HD 

and then the initial quantum state |ψ0〉 is never more its eigenstate. As a result, 

|ψ0〉 evolves into a state 
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In order to measure the overlap of the time-evolved state and the initial state we 

can use the so-called Loschmidt echo defined as [8] 
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Our goal is to check if there is a relationship between the Haldane gap and relaxa- 

tion dynamics of the perturbed state. A similar problem was studied by Mazza et al. 

for an Ising-like anisotropy [9]. Our calculations were carried out for four values 

of the parameter D = –1.0, –0.1, 0.5, 1.0. 

1. Time evolution of Matrix Product States 

The observation that for physical systems only a minor part of the Hilbert space 

is involved [10, 11], resulting in the rapid development of numerical methods based 

on a variational method within the space of Matrix Product States (MPS). It corre-

sponds to assigning a finite entanglement content to spins in the ground state. 

Therefore, any state of the spin chain can be presented in the MPS representation 
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where |σ〉 = |σ1,…, σN〉, di is the dimension of the local base {σi} at the i-th site. 

The matrices M are of dimension Di×Di. Quantity Di, called the local bond dimen-

sion, is related to the entanglement of neighboring spins. In analogous manner 

any operator can be written as a Matrix Product Operator (MPO) 
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Due to the above representation the state space grows only polynomially in the 

system size (not exponentially as usual). Thus, for d = 1 strongly correlated systems 

the time of calculations is significantly reduced. When the variational principle is 

applied, the ground state can be found by the minimization procedure 〈ψ0|HJ|ψ0〉 

under the constrain 〈ψ0|ψ0〉 = 1 [12]. Moreover, it is one of the most attractive 

features of the MPS representation that the time evolution can also be performed 

very efficiently. Therefore, discrete time as t = N∆t can be used for the anisotropic 

Hamiltonian (1), when a second-order Trotter decomposition is applied [10], the 

time-evolution operator can be presented as: 
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Then the step of the time-evolution algorithm takes a very simple form [10]: 

one starts from |ψ(t)〉 and performs the following steps: 

1. Applying the MPO of the odd bonds to |ψ(t)〉 

2. Applying the MPO of the even bonds to exp(–iHo∆t/2)|ψ(t)〉 

3. Applying the MPO of the odd bonds to exp(–iHe∆t)exp(–iHo∆t/2)|ψ(t)〉 

4. Compressing the MPO exp(–iHo∆t/2)exp(–iHe∆t)exp(–iHo∆t/2)|ψ(t)〉 to the start- 

ing dimension as |ψ(t+∆t)〉. 
In the present studies the maximal local bond dimension was Di = 80, whereas 

the time step was ∆t  = 10
–4
. 

2. Results 

First, we have examined the established ground state of (1) in terms of features 

typical for the Haldane system. Since the Hamiltonian (1) is isotropic in the spin 

space, the components of the spin-spin correlation functions and of the string 

correlation functions are all equal, respectively. Moreover, all correlated spins are 

separated by a distance 2k – 1 arranged symmetrically with respect to the center 

of the chain. 
 

 
Fig. 1. The spin-spin and string correlation functions. The inset presents a linear-log plot 

of the spin-spin correlation function. The dashed line shows the value Oα ~ –0.3743 

As one can see in Figure 1, the spin-spin correlation functions decay exponentially 
as could be expected. Next, the string correlation functions show a wide plateau 

followed by a gradual decline. The decline is due to the influence of the chain ends 

when the spin-spin distance reaches a maximum value. So, when the distance 

between the spins increases the value of the string correlation tends towards 

a constant value O
α
 ~ –0.3743 [13] which indicates the non-local string long-range 

ordering. 

Next we present numerical studies of the quench dynamics of the S = 1 AF 

Heisenberg chain after a rapid change of the environmental anisotropy. As shown 
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in Figure 2, the Loschmidt echo behavior significantly depends on the anisotropy 

parameter. When the absolute value D is high and corresponds to the parameter 

range where the Haldane gap is closed [6], the Loschmidt echo decays exponen-

tially. For the other cases the Loschmidt echo exhibits an oscillation superimposed 

on the decreasing function going to a finite value. If the parameter D is negative, 

this limiting value of the Loschmidt echo is clearly higher than for positive values 

of D. 
 

 
Fig. 2. The time evolution of the Loschmidt echo. The case D = 0 is the reference case 

without a quantum quench where the overlap between initial state 
and the evolved state is perfect 

Conclusions 

We have examined the ground-state response of a finite S = 1 antiferromagnetic 

Heisenberg chain after a sudden change of the environmental uniaxial anisotropy. 

As we have checked, the initial state was taken to be the pure Haldane state. After 

quenching, the system evolved under the influence of a changed environment 

(within or outside of the Haldane phase regime). 

The Loschmidt echo allows one to quantify the sensitivity of quantum evolution 

to perturbations. When the value D corresponds to the regime where the Haldane 

gap is closed, the Loschmidt echo decays exponentially. Otherwise the Loschmidt 

echo exhibits an oscillation superimposed on the decreasing function going to 

a finite value. Moreover, it turned out that the initial Haldane state is disturbed 

more by the easy-plane anisotropy than by the easy-axis one. 
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