PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Augmentation in heat transfer and friction of three sides over one side dimple roughened solar duct

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Providing roughness is an effective method to heat fluids to high temperature. Present paper make use of concave dimple roughness on one and three sides of roughened ducts aimed at determining rise in heat transfer and friction of three sides over one side roughened duct. Three sides roughened duct produces high heat transfer compared to one side roughened. Results are shown as a rise in Nusselt number and friction factor of three sides over one side roughened duct. Experimental investigation was conducted under actual outdoor condition at National Institute of Technology Jamshedpur, India to test various sets of roughened collectors. Roughness parameter varied as relative roughness pitch 8–15, relative roughness height 0.018–0.045, dimple depth to diameter ratio 1–2, Reynolds number 2500– 13500 at fixed aspect ratio (width/hight) 8. Highest enhancement in Nusselt number for varying relative roughness pitch, height, and diameter ratio was respectively found as 2.6 to 3.55 times, 1.91 to 3.42 times and 3.09 to 3.94 times compared to one side dimple roughened duct. Highest rise in friction for three sides over one side roughened duct for these varying parameters was respectively found as 1.62 to 2.79 times, 1.52 to 2.34 times and 2.21 to 2.56 times. To visualize the effect of roughness parameter on heat transfer and friction factor, variation in Nusselt number and friction factor for varying roughness parameters with Reynolds number is shown.
Rocznik
Strony
57--89
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr., wz.
Twórcy
autor
  • Department of Mechanical Engineering, Maulana Azad National Institute of Technology (MANIT)-Bhopal, MP-462003, India
Bibliografia
  • [1] Sukhatme S.P.: Solar Energy Engineering. Prentice Hall Inc., New Jersey 1986.
  • [2] Han J.C., Zhang, Y.M., Lee C.P.: Augmented heat transfer in square channels with parallel, crossed, and V shaped angled ribs. J. Heat Trans-T ASME 113(1991), 590–596.
  • [3] Han J.C., Park J.S., Lei C.K.: Heat transfer in rectangular channel with ribturbulators. Int. J. Heat Mass Tran. 31(1984), 183–195.
  • [4] Saini J.S.: Use of artificial roughness for enhancing performance of solar air heater. Proc. XVII National and VI ISHME/ASME Heat and Mass Transfer Conference, January 05–07, 2004. IGCAR, Kalpakkam, India.
  • [5] Duffie J.A., Beckman W.A.: Solar Engineering Thermal Processes. John Wiley, New York 1991.
  • [6] Garg H.P., Prakash J.P.: Solar Energy – Fundamentals and Applications, Tata McGraw-Hill, New Delhi, 1997.
  • [7] Panos K., Ehab S., Farrinton D.: Effect of artificial roughness on heat transfer and friction factor in a solar air heater. Sol. Energy 3(1959), 19–23.
  • [8] Han J.C., Glicksman L.R., Rosenow W.M.: Investigation of heat transfer and friction for rib-roughened surfaces. Int. J. Heat Mass Tran. 21(1978), 1143–56.
  • [9] Lau S.C., McMillin R.D., Han J.C.: Turbulent heat transfer and friction in a square channel with discrete rib turbulators. Trans ASME, J Turbo Machinery 113(1991), 360–366.
  • [10] Alam T., Kim M.: Numerical study on thermal hydraulic performance improvement in solar air heater duct with semi ellipse shaped obstacles. Energy 112(2016), 588–598.
  • [11] Dhiman P., Thakur N.S., Chauhan S.R.: Thermal and thermohydraulic performance of counter and parallel flow packed bed solar air heaters. Renew. Energy 46(2012), 259–268.
  • [12] Ravi R.K., Saini R.P.: Experimental investigation on performance of a double pass artificial roughened solar air heater duct having roughness elements of the combination of discrete multi V shaped and staggered ribs. Energy 116(2016), 507–516.
  • [13] Prasad B.N., Saini J.S.: Effect of artificial roughness on heat transfer and friction factor in a solar air heater. Sol. Energy 41(1988), 6, 555–560.
  • [14] Ravigururajan T.S., Bergles A.E.: General correlations for pressure drop and heat transfer for single-phase turbulent flow in internally ribbed tubes. Trans. ASME HTD 52(1985), 9–20.
  • [15] Saini R. P. and Saini J.S.: Heat transfer and friction factor correlations for artificially roughened ducts with expanded metal mesh as roughness element. Int. J. Heat Mass Tran. 40(1997), 4, 973–986.
  • [16] Momin A.M.E., Saini J.S., Solanki S.C.: Heat transfer and friction in solar air heater duct with V-shaped rib roughness on absorber plate. Int. J. Heat Mass Tran. 45(2002), 3383–3396.
  • [17] Karmare S.V., Tikekar A.N.: Heat transfer and friction factor correlation for artificially roughened duct with metal grit ribs. Int. J. Heat Mass Tran. 50(2007), 4342–4351.
  • [18] Chandra P.R., Alexander C.R., Han J.C.: Heat transfer and friction behaviors in rectangular channel with varying number of ribbed walls. Int. J. Heat Mass Tran. 46(2003), 481–495.
  • [19] Burgess N.K., Oliveira M.M., Ligrani P.M.: Nusselts number behavior on deep dimpled surfaces with a channel. J. Heat Transfer 125(2003), 11–18.
  • [20] Ridouane E.I.H., Campo A.: Heat transfer and pressure drop characteristics of laminar air flows moving in a parallel-plate channel with transverse hemi-cylindrical cavities. Int. J. Heat Mass Tran. 50(2007), 3913–3924.
  • [21] Karwa R., Solanki S.C., Saini J.S.: Heat transfer coefficient and friction factor correlation for the transitional flow regime in rib-roughened rectangular duct. Int. J. Heat Mass Tran. 42(1999), 1597–1615.
  • [22] Jaurker A.R., Saini J.S., Gandhi B.K.: Heat transfer and friction characteristics of rectangular solar air heater duct using rib-grooved artificial roughness. Sol. Energy 80(2006), 895–907.
  • [23] Saini S.K., Saini R.P.: Development of correlations for Nusselts number and friction factor for solar air heater with roughened duct having arc-shaped wire as artificial roughness. Sol. Energy 82(2008), 1118–1130.
  • [24] Wongcharee K., Changcharoen W., Eiamsa-ard S.: Numerical investigation of flow friction and heat transfer in a channel with various shaped ribs mounted on two opposite ribbed walls. Int. J. Chem. React. Eng. 9(2011), 1–21.
  • [25] Varun, Saini R.P., Singal S.K.: Investigation on thermal performance of solar air heaters having roughness elements as a combination of inclined and transverse ribs on the absorber plate. Renew. Energy 33(2008), 1398–1405.
  • [26] Kumar V., Prasad L.: Thermal performance investigation of one and three sides concave dimple roughened solar air heaters. IJMET 8(2017), 12, 31–45, ID:JMET_08_12_004.
  • [27] Kumar V., Prasad L.: Experimental investigation on heat transfer and fluid flow of air flowing under three sides concave dimple roughened duct. IJMET 8(2017), 11, 1083–1094, ID: IJMET_08_11_110.
  • [28] Kumar V., Prasad L.: Experimental analysis of heat transfer and friction for three sides roughened solar air heater. Annales de Chimie – Science des Matériaux, 75–107, ACSM. Volume 41–n◦C 1–2/2017.
  • [29] Kumar V.: Nusselt number and friction factor correlations of three sides concave dimple roughened solar air heater. Renew. Energy 135(2019), 355–377.
  • [30] Kumar V., Prasad L.: Performance Analysis of three sides concave dimple shape roughened solar air heater. J. Sustainable Development of Energy, Water and Environment Systems JSDEWES 6(2018), 4, 631–648.
  • [31] Kumar V., Prasad L.: Performance prediction of three sides hemispherical dimple roughened solar duct. Instrumentation, Mesure, Métrologie I2M. 17(2018), 2, 273–293.
  • [32] Kumar V., Prasad L.: Augmentation in thermal efficiency of three sides over one side concave dimple roughened ducts. Carbon – Sci. Tech. 10(2018), 3, 8–16, ISSN 0974-0546.
  • [33] Kumar V., Prasad L.: Thermal performance investigation of three sides concave dimple roughened solar air heaters. Sol. Energy 188(2019), 361–379.
  • [34] ASHRAE Standard 93–97, Methods of testing to determine the thermal performance of solar collectors. American Society of Heating, Refrigerating and Air-conditioning Engineers Inc., Atlanta, 1977.
  • [35] Saini R.P., Verma J.: Heat transfer and friction correlations for a duct having dimple shape artificial roughness for solar air heater. Energy 33(2008), 1277–1287.
  • [36] Kline S.J., McClintock F.A.: Describing uncertainties in single sample experiments. Mech. Eng. 75(1953), 3–8.
  • [37] Murmu R., Kumar P., Singh H.N.: Heat transfer and friction factor correlation for inclined spherical ball roughened solar air heater. Arch. Thermodyn. 41(2020), 2, 3–34, doi: 10.24425/ather.2020.132958
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04170d5c-0e0d-4833-9d38-68de60622d92
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.