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Abstract: In order to solve the issues of high muzzle flash, smoke, residue,
migration rate and carcinogenicity of double-base oblate propellants deterred
by dibutyl phthalate (DBP), skin-core structure microporous oblate propellants
to replace DBP deterring technology were fabricated in the present work
by supercritical carbon dioxide (SC-CO,) foaming technology. Poly(neopentanediol
adipate) (NA) was employed as the deterrent to modify the combustion
properties because of ist lower migration rate in storage. Scanning electron
microscopy (SEM) was used to observe the morphology of the microporous oblate
propellants generated by different processing conditions, and the combustion
properties were investigated by closed bomb tests. The SEM images indicated
that the skin region displayed smaller cell diameters and lower cell density
compared with cells in the core region. The closed bomb tests demonstrated that
it was feasible to adjust the progressive combustion performance by controlling
the skin-core structure and the NA deterred layer. The burning time values
of the original, the microcellular, and the NA deterred samples were 3.45, 2.14,
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and 4.20 ms, respectively. Microcellular oblate propellants, with a skin-core
structure foamed by SC-CO, and deterred by NA, provides a novel and promising
method to realize progressive combustion performance.

Keywords: SC-CO,, microcellular oblate propellant, skin-core structure,
poly(neopentanediol adipate) deterring, combustion performance

1 Introduction

A double-base oblate propellant is a spherical propellant after flattening treatment.
The web size is in the range from 0.3 mm to 0.7 mm, and nitrocellulose (NC)
and nitroglycerin (NG) are the energetic components for double-base oblate
propellants. A double-base oblate propellant is the main energy source
for providing the power for the motion of the bullet in light weapons,
because of the high loading density and high burning rate. In order to meet
the requisite high muzzle velocity and low chamber pressure in the firing
process, deterring and coating technology are the common and effective methods
to realize the progressive combustion performance of oblate propellants [1].
Dibutyl phthalate (DBP) is used as the traditional deterrent for double-base oblate
propellants, and oblate propellants deterred by DBP exhibit high loading densities
and progressive combustion performance [2]. However, DBP desensitized
double-base oblate propellants produce a lot of muzzle flash and smoke
in the firing process, which goes against the shooting for soldiers. The n benzene
ring structure of DBP results in a lower oxygen balance of the propellants,
leading to a mass of residue in the burning process, and a gas port plugged up
by such residues will reduce the service life of the weapon. As DBP is a chemical
compound with a low molecular mass, the stepped distribution of the DBP
concentration is not preserved in the long-term storage process of double-base
oblate propellants, and the fact that the internal DBP migrates to the surface
or escapes from the sample makes DBP deterring unworkable for oblate
propellants. What is worse, the carcinogenic property of DBP makes it unfriendly
to humans and the environment, so DBP has become gradually forbidden
in many countries [3].

Some researchers have explored higher molecular weight materials,
such as polyurethane elastomer, poly(neopentanediol adipate) (NA),
as a replacement in DBP deterring technology for the progressive combustion
performance of oblate propellants [4, 5]. The higher molecular weight
of this deterrent confers a lower migration rate in storage, which is beneficial
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in enhancing the service life of gun propellants. However, NA is difficult
to uniformly distribute on the surface of oblate propellants, and the low diffusion
rate of NA results in a long time for the deterring process.

On the other hand, some researchers have investigated new methods
for controlling the laws of energy release in respect to the propellant structure.
According to the geometric burning mode, a high specific surface area promotes
the combustion properties of gun propellants. Binbin et al. [6] investigated
the effects of the particle size and morphology of nitroguanidine (NQ)
on the combustion properties of triple-base propellants. He found that a triple-
base propellant with a smaller NQ particle size exhibited significantly higher
burning rate, as the smaller NQ particle size provided a larger specific surface.
Meanwhile, foamed propellants allow potential ways for adjusting the combustion
properties through their micropore structure. In chemical foaming technology,
Bohnlein-MauB et al. [7, 8] produced foamed thermoset polyurethane-bonded
hexogen (RDX) propellants by the reaction injection moulding process,
which exhibited good vulnerability and high burning rate. Physical foaming
technology gives another way to fabricate foamed propellants. Ping et al. [9]
employed the leaching method to prepare nitrocellulose-based microporous
spherical powder, and the results showed that the surface of the nitrocellulose-
based microporous spherical powder was smooth. Ying et al. [10, 11] proposed
supercritical carbon dioxide (SC-CO,) foaming technology for the preparation
of microcellular gun propellants, and the presence of the cell structure
enhanced the specific surface area, promoting the combustion properties
of the gun propellants. What is more, SC-CO,, acting as the physical foaming
agent, escaped completely from the propellant at the end of the foaming process.
However, it was not simple to control the cell nucleation and growth
as the propellants were prepared in cylinders of large size (diameter = 5 mm,
length = 10 mm), and the previous work focused mainly on improving
the burning rate through the porous core.

In the present work, the microporous oblate propellants were fabricated
by SC-CO, foaming technology, and the progressive combustion performance
was obtained from the skin-core structure. NA, as a replacement for DBP,
was used as the deterrent for modifying the progressive combustion performance.
The cell morphology of the skin-core structure microporous oblate propellants
was characterized by scanning electron microscopy (SEM), and the combustion
performance was measured by closed bomb tests.
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2 Experimental

2.1 Materials

CO, gas (purity>99.9%) and liquid nitrogen were purchased from Nanjing
Wenda Special Gas Co., Ltd., ethyl acetate (analytical reagent) was supplied
from Sinopharm Chemical Reagent Co., Ltd., NA and the double-base oblate
propellants were provided by Luzhou North Chemical Industries Co., Ltd.
The web size of the oblate propellants was 0.62 mm.

2.2 Preparation of microcellular oblate propellant

The skin-core structure microporous oblate propellants were fabricated
with SC-CO, by the typical intermittent warming-up process, as shown
in Figure 1. Firstly, the double-base oblate propellant was placed in a high
pressure reactor, and CO, gas from the cylinder was injected into the reactor
by a pump, to reach the set saturation pressure (P, 15 MPa). Secondly, the reactor
was immersed in the water bath A at the set saturation temperature (7, 40 °C)
for a certain period of time (saturation time, #, 7 h), while the CO, saturation
condition in the propellant matrix was reached, as determined from our previous
research [12]. Thirdly, the propellant was moved from the reactor into a fixed
temperature water bath (foaming temperature, 77) for several seconds (foaming
time, t, 40 s); the time interval from the high pressure reactor to the water
bath B was called the desorption time (z4). The sample was then quenched
in a water bath C (15 °C) for the cooling process. Finally, the microporous
oblate propellant was dried at 60 °C for 1 week to eliminate water. Table 1 lists
the desorption times and foaming temperatures for different samples.

CO; cylinder

I—I'.'lj
& | & &\ &

Water Bath A Water Bath B Water Bath C

Saturation Process +Desorption Process +Foaming Process + Cooling Process —+  Sample

Pump

Figure 1. Flow chart of the foaming process
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Table 1.  Process conditions for the microporous oblate propellants
Sample 1# 2% 3% (6%)* 4# 5%
t4 [min] 2 4 8 8 8
T; [°C] 95 95 95 90 99

* sample 6" was the deterred product of sample 3*

2.3 Deterring process

NA was applied as the deterrent to modify the combustion properties
of the microporous oblate propellants (sample 37) by the wet deterring process;
the ethyl acetate and NA contents were 1 and 3 wt.%, respectively. In this work,
the deterring temperature and time were 80 °C and 1 h, respectively. The final
sample modified by NA was dried at 70 °C for 1 week to eliminate water
and ethyl acetate, and it was named as sample 6",

2.4 Morphology characterization

The morphology of the microporous oblate propellants was characterized
using a QUANTA FEG 250 scanning electron microscope (SEM, FEI LTD).
The foamed samples were treated with liquid nitrogen for a certain time,
and were then immediately fractured. The fractured surfaces of the samples
were sputtered with gold, and the morphology was recorded by SEM.
The skin-core structure of the microcellular oblate propellants was observed
from the SEM images with the assistance of Image-Pro Plus [13].

2.5 Closed bomb tests

The combustion properties of the double-base oblate propellants
and the microporous oblate propellants was investigated by closed bomb tests.
The volume of the closed bomb was 50 cm?, and the amount of sample
in the bomb was 6 g. All of the samples were fired by 2# nitrocellulose under
the same ignition pressure (9.8 MPa), and the combustion curves for different
processing conditions were calculated from the measured data.

3 Morphology of Microporous Oblate Propellants

3.1 Skin-core structure formation mechanism
In the formation mechanism of the cells, the classical nucleation theory
was applied to explain cell nucleation as follows:
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-AG,
N, =C/, exp(k—Th"“‘J (1)

where N, is the cell nucleation rate, Cj is the fluid concentration, 7 is temperature,
AG"1om 18 the free energy, f; is the frequency factor, and £ is Boltzmann’s constant.
From Equation 1, the SC-CO, concentration and the temperature are the main
factors affecting the cell nucleation rate [14]. As cell nucleation occurs
rapidly, it is difficult to adjust the foaming temperature in the foaming process.
Thus, in this work, control of cell nucleation was achieved by changing
the concentration distribution of SC-CO,.

After being saturated for sufficient saturation time (7 h), the SC-CO, sorption
process is equal to the desorption process, which leads to the dynamic solubility
equilibrium. When the propellant is removed from the reactor, the concentration
distribution of SC-CO, is uniform, as in Figure 2(a), and the SC-CO,
concentration in the center (C,) is equal to that in the surface of the sample (C).
During the desorption process, SC-CO, escapes from the oblate propellant,
and the escape rate at the surface is faster than in the center. Therefore, C; is lower
than C. at the end of the desorption process, as shown in Figure 2(b),
and the SC-CO; concentration decreases gradually towards the surface.
Therefore, the desorption time is the key factor determining the concentration
distribution of SC-CO..

(a) (b)

Figure 2. Concentration distribution of SC-CO, in the desorption process

In the foaming process, cell nucleation in the core region competes with that
in the skin region. As C. is much higher than C;, the driving force of the cell
nucleation is stronger in the core region, so the quantity of cells is quite
small in the skin region after the cooling process. Therefore, there is a critical
concentration of SC-CO, determining the formation of the skin-core structure,
and the driving force is not enough for cell nucleation and growth when
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the SC-CO, concentration is lower than this critical value. The critical value
is named as C”, and the critical radius is named as 7" as shown in Figure 3.
The radius of the core region is *, and the thickness of the skin regionis (» — ).
Based on C”, microporous oblate propellants can be designed with different
thickness of the skin region to meet the various needs of combustion
performance. In the deterring technology, DBP disperses in the surface
of the oblate propellant to adjust the combustion performance, and skin-core
structure microporous oblate propellants realize the progressive combustion
performance by improving the energy releasing rates of cells in the core region.
Thus, this method is novel and promising, to meet the requirements of high
muzzle velocity and low chamber pressure in light weapons.
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Figure 3. Relationship between the concentration distribution and the radius

According to the formation mechanism above, a microporous oblate
propellant is fabricated; Figure 4 shows an SEM image of the skin-core structure.
Compared with the cells in the core region, this indicates that the skin region
displays smaller cell diameters and a lower cell density. The values of cell diameter
and density can be applied to explain the specific surface of microcellular
oblate propellants in the two-dimensional structure. In the burning process
of'a microcellular oblate propellant with skin-core structure, a larger specific
surface leads to a higher burning rate in the core region. Therefore, the thickness
of the skin and core regions may be adjusted by adjusting the foaming
parameters in order to control the combustion performance of the microcellular
oblate propellant.
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Figure 4. SEM image of the skin-core structure

3.2 Effects of desorption time on cell morphology

The desorption time determines the concentration distribution of SC-CO,in an oblate
propellant. Figure 5 shows the SEM images of the cell morphology for various
desorption times (5(a): t4 = 2 min, 5(b): 4 =4 min, and 5(c): 4 = 8 min) when
the foaming temperature was 95 °C. This shows that the thickness of the skin
region was 12.80 (#s =2 min), 13.26 (4 =4 min), and 15.16 pm (¢, = 8 min),
respectively, which proves that the thickness of the skin region increases
with increasing desorption time. According to the skin-core structure
formation mechanism, Cs and C, decrease with increasing desorption time,
resulting in a lower cell density and diameter. When C; is below a certain
value, the SC-CO, concentration is too low for the growth of cell nucleation,
so the thickness of the un-foamed region is higher when the desorption time
is longer. Thus, the slow-burning layer can be controlled by the desorption time.
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Figure 5. SEM images of the skin-core structure for different desorption times:
(a) t4 =2 min, (b) £ty =4 min, and (c) ¢, = 8 min

3.3 Effects of foaming temperature on cell morphology

Figure 6 shows the SEM images of microcellular oblate propellants from different
foaming temperatures (6(a): 7= 90 °C, 6(b): Tr=99 °C), for a desorption time of
8 min. The skin layer thickness values of Figures 6(a), 5(c) and 6(b) were 20.36,
15.16, and 13.56 pum, respectively, for foaming temperatures of 90, 95, and 99 °C,
respectively. This reveals that the thickness of the un-foamed layer is smaller when
the foaming temperature is higher. Due to the classical nucleation theory, when the
oblate propellants are subjected to the same saturation process, the temperature
difference between the saturation and the foaming temperature is the main factor
for the driving force of cell nucleation, and a higher foaming temperature results
in a higher nucleation rate. Therefore, a higher foaming temperature contributes
to increasing the cell diameter and density of microcellular oblate propellants,
leading to a reduced thickness of the slow-burning layer. Since the cell structure
is sensitive to the foaming temperature, but cell nucleation occurs at the level of
milliseconds, it is difficult to adjust the cell structure by controlling the foaming
temperature. However, the diffusion process of SC-CO; is relatively slow, and
this is therefore an effective method for changing the desorption time.
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(b)
Figure 6. SEM images of the skin-core structure from different foaming
temperatures: (a) 7r= 90 °C, (b) 7= 99 °C
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3.4 Effects of the deterring process on cell morphology

Although the skin-core structure causes the different burning rates, the skin region
behaving as the slow-burning layer and the core region behaving as the fast-
burning layer, there are still some cells in the skin region, leading to a high
burning rate in the initial burning. NA was applied to modify the slow-burning
layer as a polymeric deterrent. In this work, the cells existing at the surface
of the propellant improved the diffusion rate of NA, which allowed NA
to become uniformly distributed in the surface in reduced time. The combination
of the skin-core structure foamed by SC-CO, and the NA deterred surface
can overcome the low diffusion rate of NA and realize the progressive
combustion performance of an oblate propellant without DBP.

The skin-core structure of a microcellular oblate propellant after the deterring
process is shown in Figure 7, when the desorption time was 8 min and the foaming
temperature was 95 °C. The thickness of the skin region deterred by NA
was 30.08 um, while the thickness of the skin region of the microcellular oblate
propellant was 15.16 pm, so the deterring process can adjust the combustion
performance of microcellular oblate propellants. Meanwhile, most of the cells
in the skin region were closed after being deterred by NA. This is attributed
to the fact that the presence of ethyl acetate in the deterring process dissolves
cells in the skin region, and this causes the compact structure of the slow-
burning layer. The results showed that this method can effectively improve
the combustion performance of microcellular oblate propellants via two aspects.
On one hand, NA is distributed in the surface of microcellular oblate propellants,
and the cell structure promotes the diffusion of NA. On the other hand,
the addition of ethyl acetate leads to a compact structure of the skin region.
These two factors make a difference to the progressive combustion performance
of oblate propellants.
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Figure 7. SEM image of the skin-core structure after the NA deterring process

4 Combustion Performance of Microcellular Oblate Propellants

The combustion performance of the original and the microcellular oblate
propellants was investigated by closed bomb tests, and the vivacity against
burnt fraction (L-B) curves were obtained from the measured data, as shown
in Figure 8. L-B curves are the common way to evaluate the progressive
combustion performance of gun propellants. Figure 8 implies that the foamed
samples have the higher initial dynamic vivacity, and that the microcellular
oblate propellant reached the highest dynamic vivacity (Lm.x = 9.86 MPa!'s™!)
when B was 0.31, while the original sample reached L. =5.17 MPa!-s’!
when B was 0.15. In the intermediate period of the burning process,
the microcellular oblate propellant exhibited a higher generating rate
of burning gas, which would promote the muzzle velocity of the gun propellant.
The microcellular oblate propellant deterred by NA shows lower initial
dynamic vivacity and L., than those of the microcellular oblate propellant,
indicating that the deterring process is effective in the combustion performance
of a microcellular oblate propellant. Thus, the results demonstrate that
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it is possible to adjust the progressive combustion performance of an oblate
propellant by controlling the skin-core structure and the deterred layer
with the foaming and deterring processes.

10

— Original

L[1-MPa"'-s"]

0.0 0.2 0.4 0.6 0.8 1.0
B

Figure 8. L-B curves of the original and the microcellular oblate propellants

The P-t curves of the samples are shown in Figure 9. The maximum
pressure values of the microcellular sample (159 MPa) was close to that
of the original sample (159 MPa), while the value of the NA deterred
sample was 150 MPa. However, they exhibited different burning times (z,);
the #,, values of the original, the microcellular, and the NA deterred sample
were 3.45, 2.14, and 4.20 ms, respectively. Therefore, the SC-CO, foaming
technology has effects on decreasing the burning time of the gun propellants,
resulting from numerous cells in the sample. Meanwhile, the sample deterred
by NA exhibited a slow release rate of burning gas in the initial period of burning
(t <2 ms), which means that the NA deterring technology plays the main role
in decreasing the release rate of burning gas. The sample displayed a fast release
rate of burning gas when ¢ > 2 ms. Thus, the combination of NA deterring
and SC-CO, foaming technology can realize a lower chamber pressure, a higher
muzzle velocity and a low harmful shooting process without DBP.
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Figure 9. P-t curves of the original and the microcellular oblate propellants

5 Conclusions

In this work, skin-core structure microporous oblate propellants were fabricated
by the SC-CO, foaming technology and the NA deterring technology.
SEM was used to study the morphology of the microporous oblate propellants
formed under different conditions, and the combustion properties were investigated
by closed bomb tests. The SEM images indicated that the skin region
displays smaller cell diameters and a lower cell density compared with those
in the core region. The thickness of the skin region increased with increasing
desorption time, but the thickness of the skin region was lower when the foaming
temperature was higher. When NA was applied to modify the slow-burning
layer as a polymer deterrent, the thickness of the skin region deterred by NA
was 30.08 um, while the thickness of the skin region of microcellular
oblate propellant was 15.16 um. The results obtained from the closed bomb
tests demonstrated that it is feasible to adjust the progressive combustion
performance of an oblate propellant by controlling the skin-core structure
and the deterred layer through the foaming and deterring processes. The ¢, values
of the original, the microcellular, and the NA deterred sample were 3.45, 2.14,
and 4.20 ms, respectively. The microcellular oblate propellant with a skin-
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core structure formed by SC-CO, foaming and NA deterring technology
provides a novel and promising method for realizing a progressive combustion
performance, by adjusting the energy release rates in the skin and core regions.
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