PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quantitative and qualitative assessment of the impact of osteoporosis on endplate layers

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The endplate (EP) is a composite structure made of osseous and cartilage components that separates the intervertebral disc from the vertebral body. As an intermediary link between rigid bone tissue and the flexible intervertebral disc, EP is affected by structural changes as well as changes in biomechanical properties of both these elements caused by pathological changes in the spine. One of the modern civilization hazards related to the skeletal system are osteoporotic changes. Although the influence of osteoporosis on vertebral bodies has been extensively researched, there is still a lack of information about its impact on the structure of the endplate itself. The aim of this study was to carry out a quantitative and qualitative assessment of the impact of osteoporosis on individual layers of EP. An animal model of the cervical and thoracic vertebrae was used. The analyses were conducted on two study groups: control (healthy sheep) and osteoporotic (with induced osteoporosis). Microstructural changes were analyzed using a micro-CT scanner, while mechanical parameters were analyzed using the microindentation test. There were no statistically significant differences in the analyzed parameters between cranial and caudal endplates. The performed tests showed significant changes in the trabecular microarchitecture of the endplate layer caused by osteoporosis. Despite the presence of morphometric changes in the osteoporotic group, no significant changes were observed in the mechanical properties of analyzed structures. A comparison of the mechanical parameters obtained for healthy endplates of the sheep model showed a high correlation with literature data for the human model.
Twórcy
  • Department of Biomedical Engineering, Mechatronics and Theory of Mechanisms, Wroclaw University of Science and Technology, Lukasiewicza 7/9 Street, 50-371 Wroclaw, Poland
  • Department of Surgery, Wroclaw University of Environmental and Life Science, pl. Grunwaldzki 51, 50-366 Wroclaw, Poland
  • Department of Surgery, Wroclaw University of Environmental and Life Science, pl. Grunwaldzki 51, 50-366 Wroclaw, Poland
  • Department of Biomedical Engineering, Mechatronics and Theory of Mechanisms, Wroclaw University of Science and Technology, Lukasiewicza 7/9 Street, 50-371 Wroclaw, Poland
Bibliografia
  • [1] Pitzen T, Schmitz B, Georg T, Barbier D, Beuter T, Steudel WI, et al. Variation of endplate thickness in the cervical spine. Eur Spine J 2004;235–40.
  • [2] Panjabi MM, Chen NC, Shin EK, Wang JL. The cortical shell architecture of human cervical vertebral bodies. Spine (Phila Pa 1976) 2001;26:2478–84.
  • [3] Zhao FD, Pollintine P, Hole BD, Adams MA, Dolan P. Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone 2009;44:372–9.
  • [4] Roberts S, Menage J, Urban JP. Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine (Phila Pa 1976) 1989;14:166–74.
  • [5] Moore RJ. The vertebral end-plate: what do we know? Eur Spine J 2000;9:92–6.
  • [6] Broom ND, Thambyah A. The soft–hard tissue junction structure, mechanics and function. Cambridge University Press; 2018.
  • [7] Taylor JR. Growth of human intervertebral discs and vertebral bodies. J Anat 1975;120:49–68.
  • [8] Moore RJ. The vertebral endplate: disc degeneration, disc regeneration. Eur Spine J 2006;15:333–7.
  • [9] Rutges JP, Jagt van der OP, Oner FC, Verbout AJ, Castelein RJ, Kummer JA, et al. Micro-CT quantification of subchondral endplate changes in intervertebral disc degeneration. Osteoarthritis Cartilage 2011;19:89–95.
  • [10] Le Maitre CL, Pockert A, Buttle DJ, Freemont AJ, Hoyland JA. Matrix synthesis and degradation in human intervertebral disc degeneration. Biochem Soc Trans 2007;35:652–5.
  • [11] Zeytinoglu M, Jain RK, Vokes TJ. Vertebral fracture assessment: enhancing the diagnosis, prevention, and treatment of osteoporosis. Bone 2017;104:54–65.
  • [12] Osterhoff G, Morgan EF, Shefelbine SJ, Karim L, McNamara LM, Augat P. Bone mechanical properties and changes with osteoporosis. Injury 2016;47:11–20.
  • [13] Gong H, Zhang M, Qin L, Lee KK, Guo X, Shi SQ. Regional variations in microstructural properties of vertebral trabeculae with structural groups. Spine (Phila Pa 1976) 2006;31:24–32.
  • [14] Fields AJ, Lee GL, Keaveny TM. Mechanisms of initial endplate failure in the human vertebral body. J Biomech 2010;43:3126–31.
  • [15] Roy ME, Rho JY, Tsui TY, Evans ND, Pharr GM. Mechanical and morphological variation of the human lumbar vertebral cortical and trabecular bone. J Biomed Mater Res 1999;44:191–7.
  • [16] Kielbowicz Z, Piatek A, Biezynski J, Skrzypczak P, Kuropka P, Kuryszko J, et al. The experimental osteoporosis in sheep – clinical approach. Pol J Vet Sci 2015;18:645–54.
  • [17] Dall'Ara E, Karl C, Mazza G, Franzoso G, Vena P, Pretterklieber M, et al. Tissue properties of the human vertebral body sub-structures evaluated by means of microindentation. J Mech Behav Biomed Mater 2013;25: 23–32.
  • [18] Tomanik M, Nikodem A, Filipiak J. Microhardness of human cancellous bone tissue in progressive hip osteoarthritis. J Mech Behav Biomed Mater 2016;64:86–93.
  • [19] Zhang J, Niebur GL, Ovaert TC. Mechanical property determination of bone through nano- and micro-indentation testing and finite element simulation. J Biomech 2008;41:267–75.
  • [20] Li X, An YH, Wu YD, Song YC, Chao YJ, Chien CH. Microindentation test for assessing the mechanical properties of cartilaginous tissues. J Biomed Mater Res B Appl Biomater 2007;80:25–31.
  • [21] Kot M, Kobielarz M, Maksymowicz K. Assessment of mechanical properties of arterial calcium deposition. Trans FAMENA 2011;35:49–56.
  • [22] Ferguson VL, Bushby AJ, Boyde A. Nanomechanical properties and mineral concentration in articular calcified cartilage and subchondral bone. J Anat 2003;203:191–202.
  • [23] Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 2004;19:3–20.
  • [24] Filipek J, Binkowski M, Maciejewska K, Drzazga Z, Wróbel Z. Investigation of microstructure of bone tissue in mandibles of newborn rats after maternal treatment with antiretroviral drugs. Biocybern Biomed Eng 2015;35:54–63.
  • [25] Komori T. Animal models for osteoporosis. Eur J Pharmacol 2015;759:287–94.
  • [26] Wong RMY, Choy MHV, Li MCM, Leung KS, Chow SK-H, Cheung WH, et al. A systematic review of current osteoporotic metaphyseal fracture animal models. Bone Joint Res 2018;6–11.
  • [27] Schulz MC, Kowald J, Estenfelder S, Jung R, Kuhlisch E, Eckelt U, et al. Site-specific variations in bone mineral density under systemic conditions inducing osteoporosis in minipigs. Front Physiol 2017;8.
  • [28] Kubaszewski L, Miekisiak G, Nowakowski A, Pezowicz C, Bajor G, Kielbowicz Z, et al. Feasibility and accuracy of new insertion technique of S1 transpedicular screw. Computed tomography-based morphometric analysis. Neurol Neurochir Polska 2016;50:363–9.
  • [29] Chavassieux P, Garnero P, Duboeuf F, Vergnaud P, Brunner- Ferber F, Delmas PD, et al. Effects of a new selective estrogen receptor modulator (MDL 103,323) on cancellous and cortical bone in ovariectomized ewes: a biochemical, histomorphometric, and densitometric study. J Bone Miner Res 2001;16:89–96.
  • [30] Wilke HJ, Kettler A, Claes LE. Are sheep spines a valid biomechanical model for human spines? Spine (Phila Pa 1976) 1997;22:2365–74.
  • [31] Smit TH. The use of a quadruped as an in vivo model for the study of the spine – biomechanical considerations. Eur Spine J 2002;11:137–44.
  • [32] Szotek S, Szust A, Pezowicz C, Majcher P, Bedzinski R. Animal models in biomechanical spine investigations. Bull Vet Inst Pulawy 2004;48:163–8.
  • [33] Akhter MP, Lappe JM, Davies KM, Recker RR. Transmenopausal changes in the trabecular bone structure. Bone 2007;41:111–6.
  • [34] Barou O, Valentin D, Vico L, Tirode C, Barbier A, Alexandre C, et al. High-resolution three-dimensional micro- computed tomography detects bone loss and changes in trabecular architecture early: comparison with DEXA and bone histomorphometry in a rat model of disuse osteoporosis. Invest Radiol 2002;37:40–6.
  • [35] Laib A, Barou O, Vico L, Lafage-Proust MH, Alexandre C, Rugsegger P. 3D micro-computed tomography of trabecular and cortical bone architecture with application to a rat model of immobilisation osteoporosis. Med Biol Eng Comput 2000;38:326–32.
  • [36] Boyce RW, Ebert DC, Youngs TA, Paddock CL, Mosekilde L, Stevens ML, et al. Unbiased estimation of vertebral trabecular connectivity in calcium-restricted ovariectomized minipigs. Bone 1995;16:637–42.
  • [37] Laffosse JM, Odent T, Accadbled F, Cachon T, Kinkpe C, Viguier E, et al. Micro-computed tomography evaluation of vertebral end-plate trabecular bone changes in a porcine asymmetric vertebral tether. J Orthop Res 2010;28:232–40.
  • [38] Keller TS, Ziv I, Moeljanto E, Spengler DM. Interdependence of lumbar disc and subdiscal bone properties: a report of the normal and degenerated spine. J Spinal Disord 1993;6:106–13.
  • [39] Gong H, Zhang M, Yeung HY, Qin L. Regional variations in microstructural properties of vertebral trabeculae with aging. J Bone Miner Metab 2005;23:174–80.
  • [40] Paietta RC, Burger EL, Ferguson VL. Mineralization and collagen orientation throughout aging at the vertebral endplate in the human lumbar spine. J Struct Biol 2013;184:310–20.
  • [41] Simon MJK, Beil FT, Pogoda P, Vettorazzi E, Clarke I, Amling M, et al. Is centrally induced alveolar bone loss in a large animal model preventable by peripheral hormone substitution? Clin Oral Investig 2018;22: 495–503.
  • [42] Schorlemmer S, Ignatius A, Claes L, Augat P. Inhibition of cortical and cancellous bone formation in glucocorticoid- treated OVX sheep. Bone 2005;37:491–6.
  • [43] Oheim R, Simon MJK, Steiner M, Vettorazzi E, Barvencik F, Ignatius A, et al. Sheep model for osteoporosis: the effects of peripheral hormone therapy on centrally induced systemic bone loss in an osteoporotic sheep model. Injury 2017;48:841–8.
  • [44] Kielbowicz Z, Piatek A, Kuropka P, Mytnik E, Nikodem A, Biezynski J, et al. Experimental osteoporosis in sheep – mechanical and histological approach. Pol J Vet Sci 2016;19:109–18.
  • [45] Brock GR, Chen JT, Ingraffea AR, MacLeay J, Pluhar GE, Boskey AL, et al. The effect of osteoporosis treatments on fatigue properties of cortical bone tissue. Bone Rep 2015;2:8–13.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-041427d5-a262-4f61-88a7-cb1ee2ebf47b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.