Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
By means of wavelet transform, an ARIMA time series can be split into different frequency components. In doing so, one is able to identify relevant patters within this time series, and there are different ways to utilize this feature to improve existing time series forecasting methods. However, despite a considerable amount of literature on the topic, there is hardly any work that compares the different wavelet-based methods with each other. In this paper, we try to close this gap. We test various wavelet-based methods on four data sets, each with its own characteristies. Eventually we come to the conclusion that using wavelets does improve forecasting quality especially for time horizons longer than one-day-ahead. However, there is no single superior method: either wavelet-based denoising or wavelet-based time series decomposition is best. Performance depends on the data set as well as the forecasting time horizon.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
107--131
Opis fizyczny
Bibliogr. 44 poz., wykr., tab
Twórcy
autor
- University of Erlangen-Nuremberg. University of Erlangen-Nuremberg, Lange Gasse 20, 90403 Nuremberg
autor
- University of Erlangen-Nuremberg. University of Erlangen-Nuremberg, Lange Gasse 20, 90403 Nuremberg
Bibliografia
- [1] Abry P., Goncalves P., Flandrin P. 1995, Wavelets, spectrum analysis and l/f processes, in: Wavelets and statistics, A. Antoniadis (ed.), Springer, New York, pp. 15-30.
- [2] Ahuja N., Lertrattanapanich S., Bose N.K. 2005, Properties determining choice of mother wavelet, IEEE Froceedings — Vision, Image & Signal Frocessing, 152(5), pp. 659—664.
- [3] Alrumaih R.M., Al-Fawzan M.A. 2002, Time series forecasting using wavelet denoising: an application to Saudi stock index, "Journal of King Saud University, Engineering Sciences", 2(14), pp. 221-234.
- [4] Banerjee A., Dolado J.J., Galbraith J.W, Hendry D.F. 1993, Cointegration, error correction, and the econometric analysis of non-stationary data, Oxford University Press, Oxford.
- [5] Breiman L. 1996, Heuristics of instability and stabilization in model selection, "The Annals of Statistics", 24(6), pp. 2350-2383.
- [6] Bruzda J. 2013, Forecasting Via Wavelet Denoising — The Random Signal Case, Working Paper, Nicolaus Copernicus University.
- [7] Chen Y., Shi R., Shu S., Gao W. 2013, Ensemble and enhancedPM10 concentration forecast model based on stepwise regression and wavelet analysis, "Atmospheric Environment", 74, pp. 346—359.
- [8] Conejo A.J., Plazas M.A., Espinola R., Molina A.B. 2005,Day-aheadelectricity price forecasting using the wavelet transform and ARIMA models, IEEE Transactions on Power Systems, 20(2), pp. 1035—1042.
- [9] Daubechies I. 1992, Ten lectures on wavelets, Society for Industrial and Applied Mathematics, Philadelphia, PA.
- [10] Dickey D.A., Fuller W.A. 1979, Distribution of the estimators for autoregressive time series with a unit root, "Journal of the American Statistical Association", 74, pp. 427—431.
- [11] Donoho D., Johnstone I. 1994, Ideal spatial adaptation via wavelet shrinkage, "Biometrika", 81, pp. 425—455.
- [12] Donoho D., Johnstone I. 1995, Adapting to unknown smoothness via wavelet shrinkage, "Journal of the American Statistical Association", 90, pp. 1200-1224.
- [13] Durbin J. 1960, The fitting of time series models, "The International Statistical Review", 28, pp. 233-244.
- [14] Fabert O. 2004, Effiziente Wavelet Filterung mit hoher Zeit-Frequenz-Auflosung, Verlag der Bayerischen Akademie der Wissenschaften, Munich.
- [15] Findley D.F, Monsell B.C., Bell W.R, Otto M.C., Chen B.-C. 1998, New capabilities and methods of the X-12-ARIMA seasonal adjustment program, "Journal of Business and Economic Statistics", 16, pp. 127—176.
- [16] Gao H.Y., Bruce A.G. 1997, Wave Shrink with firm shrinkage, "Statistica Sinica", 7, pp. 855-874.
- [17] Granger C.W.J., Joyeux R. 1980, An introduction to long-memory time series models and fractional differencing, "Journal of Time Series Analysis", 1(1), PP. 15-19.
- [18] Green W.H. 2008, Econometric analysis, 6th edition, Prentice Hall International, Upper Saddle River, NJ.
- [19] Hamilton J. 1995, Time series analysis, Princeton University Press, Princeton.
- [20] Harvey A.C. 1989, Forecasting, structural time series models and the Kalman filter; Cambridge University Press, Cambridge.
- [21] Holschneider M., Kronland-Martinet R., Morlet J., Tchamitchian P., Wavelets, time-frequency methods and phase space, Springer, Berlin.
- [22] Hosking J.R.M. 1981, Fractional Differencing, "Biometrika", 68(1), pp. 165-176.
- [23] Jensen A., Cour-Harbo A. 2001, Ripples in mathematics, the discrete wavelet transform, Springer, Berlin.
- [24] Kaiser G.A. 1994, Friendly guide to wavelets, Birkhauser, Boston.
- [25] Koreisha S.G., Pukkila T.A. 1995, Comparison between different order-determination criteria for identification of ARIMA models, "Journal of Business & Economic Statistics", 13(1), pp. 127—131.
- [26] Kriechbauer T., Angus A., Parsons D., Casado M.R. 2014, An improved wavelet-ARIMA approach for forecasting metal prices, "Resources Policy" 39, pp. 32-41.
- [27] Lau K.-M., Weng H. 1995, Climate signaldetection using wavelet transform: how to make a time series sing, "Bulletin of the American Meteorological Society", 76(12), pp. 2391-2402.
- [28] Lee C.-M., Ko C.-N. 2011, Short-term load forecasting using lifting scheme and ARIMA models, "Expert Systems with Applications", 38, pp. 5902-5911.
- [29] Li Y., Xie Z. 1997, The wavelet detection of hiddenperodicities in time series, "Statistics and Probability Letters", 35(1), pp. 9-23.
- [30] Majani B.E. 1987, Decomposition methods for medium-term planning and budgeting, in: The handbook of forecasting: A manager's guide, S. Makridakis, S. Wheelwright (ed.), Whiley New York, pp. 219-237.
- [31] Mallat S.A. 2003, Wavelet tour of signal processing, 2nd edition, Academic Press, Manchester.
- [32] McNeil A.J., Frey R., Embrechts P. 2005, Quantitative risk management: concepts, techniques, and tools, Princeton University Press, Princeton.
- [33] Meyers S.D., Kelly B.G., O´Brien J.J. 1993, An introduction to wavelet analysis in oceanography and meteorology: with application to the dispersion of yanai waves, "Monthly Weather Review", 121(10), pp. 2858-2866.
- [34] Nason G.P. 2008, Wavelet methods in statistics with R, Springer, New York.
- [35] Phillips P.C.B., Perron P. 1988, Testing for a unit root in time series regression, „Biometrika", 75, pp. 335-346.
- [36] Renaud O., Starck J.L., Murtagh F. 2005, Wavelet-based combined signal filtering and predietion, IEEE Transactions on Systems, Man, and Cybernetics,B - Cybernetics, 35(6), pp. 1241-1251.
- [37] Shannon C.E. 1949, Communication in the presence of noise, Proceedings of the Institute of Radio Engineers, 37(1), pp. 10-11.
- [38] Shafie-Khah M., Moghaddam M.P, Sheikh-El-Eslami M.K. 2011, Price forecasting of day-ahead eleetricity markets using a hybrid forecast method, "Energy Conversion and Management", 52, pp. 2165-2169.
- [39] Soltani S., Boichu D., Simard P., Canu S. 2000, The long-term memory prediction by multiscale decomposition, "Signal Processing", 80(10), pp. 2195-2205.
- [40] Stein C.M. 1981, Estimation of the mean of a multivariate Normal distribution, "The Annals of Statistics", 9(6), pp. 1135-1151.
- [41] Stollnitz E.J., DeRose T.D., Salesin D.H. 1995, Wavelets for computer graphics: a primer, part 1. IEEE Computer Graphics and Applications, 15(3), pp. 76-84.
- [42] Torrence C., Compo G.P. 1998, A practical guide to wavelet analysis, "Bulletin of the American Meteorological Society", 79(1), pp. 61-78.
- [43] Wong H., Ip W.C, Xie Z., Lui X. 2003, Modelling and forecasting by wavelets, and the application to exchange rates, "Journal of Applied Statistics", 30(5), pp. 537-553.
- [44] Yousefi S., Weinreich I., Reinarz D. 2005, Wavelet-based prediction of oil prices, Chaos, Solitons & Fractals, 25, pp. 265-275.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0407c5b6-ed56-4db7-a2d0-541eca9f8d2d