PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Laccase concentration by foam fractionation of Cerrena unicolor and Pleurotus sapidus culture supernatants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Foam fractionation process for concentration of laccases from two Basidiomycete strains under different process conditions was investigated. Culture supernatants of Cerrena unicolor and Pleurotus sapidus containing active laccase were used with and without surfactant additives. Two surfactants: cationic cetrimonium bromide (CTAB) and non-ionic Polysorbate 80 were applied in the range from 0.2 mM to 1.5 mM. The pH levels ranging from 3 to 10 were examined with particular attention to pH=4, which is close to the pI of the enzymes. Results show that the source of the enzyme is significant in terms of partitioning efficiency in a foam fractionation process. Laccase from Cerrena unicolor showed the best activity partitioning coefficients between foamate and retentate of almost 200 with yields reaching 50% for pH 7.5 and concentration of CTAB cCTAB = 0.5 mM, whereas laccase from Pleurotus sapidus showed partitioning coefficients of up to 8 with 25% yield for pH 4 and cCTAB = 0.5 mM.
Rocznik
Strony
455--464
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, ul. Wólczańska 213, 90-942, Łódź, Poland
autor
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, ul. Wólczańska 213, 90-942, Łódź, Poland
autor
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, ul. Wólczańska 213, 90-942, Łódź, Poland
  • Dortmund University of Technology, The Department of Biochemical and Chemical Engineering, Emil-Figge-Straße 70, D-44227 Dortmund, Germany
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, ul. Wólczańska 213, 90-942, Łódź, Poland
Bibliografia
  • 1. Bacon J.R., Hemmant J.W., Lambert N., Moore R., Wright D.J., 1988. Characterization of the foaming properties of lysozymes and α-lactalbumins: A structural evaluation. Food Hydrocolloid, 2, 225-245. DOI: 10.1016/s0268- 005x(88)80020-1.
  • 2. Bezelgues J.B., Serieye S., Crosset-Perrotin L., Leser M.E., 2008. Interfacial and foaming properties of some food grade low molecular weight surfactants. Colloid Surfaces A, 331, 56-62. DOI: 10.1016/j.colsurfa.2008.07.022.
  • 3. Blatkiewicz, M., Prinz, A., Górak, A., Ledakowicz, S., 2016. Partitioning of Cerrena unicolor laccase activity in an aqueous two-phase system. Chem. Process Eng., 37, 269-280. DOI: 10.1515/cpe-2016-0022.
  • 4. Burghoff B., 2012. Foam fractionation applications. J. Biotech., 161, 126-137. DOI: 10.1016/j.jbiotec.2012.03.008.
  • 5. Chai J., Loha V., Prokop A., Tanner R.D., 1998. Effect of bubble velocity and pH step changes on the foam fractionation of sporamin. J. Agr. Food Chem., 46, 2868-2872. DOI: 10.1021/jf970929b.
  • 6. Claus H., Filip Z., 1997. The evidence of a laccase-like enzyme activity in a Bacillus sphaericus strain. Microbiol. Res., 152, 209-216. DOI: 10.1016/s0944-5013(97)80014-6.
  • 7. Cohen R., Persky L., Hadar Y., 2002. Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Appl. Microbiol. Biot., 58, 582-594. DOI: 10.1007/s00253-002-0930-y.
  • 8. Diamantidis G., Effosse A., Potier P., Bally R., 2000. Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biol. Biochem., 32, 919-927. DOI: 10.1016/s0038-0717(99)00221-7.
  • 9. Du L., Loha V., Tanner R.D., 2000. Modeling a protein foam fractionation process, In: Finkelstein M., Davison B.H. (Eds.), Twenty-First Symposium on Biotechnology for Fuels and Chemicals. Humana Press, 1087-1099. DOI: 10.1007/978-1-4612-1392-5_85.
  • 10. Gerken B.M., Nicolai A., Linke D., Zorn H., Berger R.G., Parlar H., 2006. Effective enrichment and recovery of laccase C using continuous foam fractionation. Sep. Purif. Technol., 49, 291-294. DOI: 10.1016/j.seppur.2005.09.015.
  • 11. Harvey B.M., Walker J.R.K., 1999. Studies with plant laccases: I. Comparison of plant and fungal laccases. J. Biochem. Mol. Biol. Biophys., 3, 45-51.
  • 12. Lemlich R., 1968. Adsorptive bubble separation methods—foam fractionation and allied techniques. Ind. Eng. Chem., 60, 16-29. DOI: 10.1021/ie50706a005.
  • 13. Li R., Wu Z., Wang Y., Ding L., Wang Y., 2016. Role of pH-induced structural change in protein aggregation in foam fractionation of bovine serum albumin. Biotech. Rep., 9, 46-52. DOI: 10.1016/j.btre.2016.01.002.
  • 14. Lindeberg G., Holm G., 1952. Occurrence of tyrosinase and laccase in fruit bodies and mycelia of some Hymenomycetes. Physiol. Plantarum, 5, 100-114. DOI: 10.1111/j.1399-3054.1952.tb08234.x.
  • 15. Linke D., Zorn H., Gerken B., Parlar H., Berger R. G., 2007. Laccase isolation by foam fractionation—new prospects of an old process. Enzyme Microb. Tech., 40, 273-277. DOI: 10.1016/j.enzmictec.2006.04.010.
  • 16. Linke D., Zorn H., Gerken B., Parlar H., Berger R.G., 2005. Foam fractionation of exo-lipases from a growing fungus (Pleurotus sapidus). Lipids, 40, 323-327. DOI: 10.1007/s11745-005-1389-x.
  • 17. Majcherczyk A., Johannes C., Hüttermann A., 1998. Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microbial. Tech., 22, 335-341. DOI: 10.1016/s0141-0229(97)00199-3.
  • 18. Merz J., Burghoff B., Zorn H., Schembecker G., 2011a. Continuous foam fractionation: Performance as a function of operating variables. Sep. Purif. Technol., 82, 10-18. DOI: 10.1016/j.seppur.2011.07.023.
  • 19. Merz J., Zorn H., Burghoff B., Schembecker G., 2011b. Purification of a fungal cutinase by adsorptive bubble separation: A statistical approach. Col. Surfaces A, 382, 81-87. DOI: 10.1016/j.seppur.2009.06.021.
  • 20. Prinz A., Zeiner T., Vössing T., Schüttmann I., Zorn H., Górak A., 2012. Experimental investigation of laccase purification using aqueous two-phase extraction. Chem. Eng. Trans., 27, 349-354. DOI: 10.14233/ajchem.2014.17063.
  • 21. Prinz, A., Koch, K., Górak, A., Zeiner, T., 2014. Multi-stage laccase extraction and separation using aqueous twophase systems: Experiment and model. Process Biochem., 49, 1020-1031. DOI: 10.1016/j.procbio.2014.03.011.
  • 22. Raja S., Murty V. R., Thivaharan V., Rajasekar V., Ramesh V., 2011. Aqueous two phase systems for the recovery of biomolecules–a review. Sci. Tech., 1, 7-16. DOI: 10.5923/j.scit.20110101.02.
  • 23. Reddy G.V., Babu P.R., Komaraiah P., Roy K.R.R. M., Kothari I.L., 2003. Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajor-caju). Process Biochem., 38, 1457-1462. DOI: 10.1016/s0032-9592(03)00025-6.
  • 24. Scherer M., Fischer R., 1998. Purification and characterization of laccase II of Aspergillus nidulans. Arch. Microb., 170, 78-84. DOI: 10.1007/s002030050617.
  • 25. Shea A.P., Crofcheck C.L., Payne F.A., Xiong Y.L., 2009. Foam fractionation of α_lactalbumin and β_lactoglobulin from a whey solution. Asia Pac. J. Chem. Eng., 4, 191-203. DOI: 10.13031/2013.21982.
  • 26. Songulashvili G., Elisashvili V., Wasser S.P., Nevo E., Hadar Y., 2007. Basidiomycetes laccase and manganese peroxidase activity in submerged fermentation of food industry wastes. Enzyme Microb. Tech., 41, 57-61. DOI: 10.1016/j.enzmictec.2006.11.024.
  • 27. Stowers C.C., Makarov V., Walker A., Edwards R.A., Tanner R.D., 2009. Effect of air flow rate on the foam fractionation of a mixture of egg white and egg yolk. Asia Pac. J. Chem. Eng., 4, 180-183. DOI: 10.1002/apj.227.
  • 28. Uraizee F., Narsimhan G., 1990. Foam fractionation of proteins and enzymes: I. Applications. Enzyme Microb. Tech., 12, 232-233. DOI: 10.1016/0141-0229(90)90045-r.
  • 29. Walker J.R., McCallion R.F., 1980. The selective inhibition of ortho-and para-diphenol oxidases. Phytochemistry, 19, 373-377. DOI: 10.1016/0031-9422(80)83184-0.
  • 30. Xu F.,1996. Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochem., 35, 7608-7614. DOI: 10.1021/bi952971a.
  • 31. Zorn H., Breithaupt D.E., Takenberg M., Schwack W., Berger R.G., 2003. Enzymatic hydrolysis of carotenoid esters of marigold flowers (Tagetes erecta L.) and red paprika (Capsicum annuum L.) by commercial lipases and Pleurotus sapidus extracellular lipase. Enzyme Microb. Tech., 32, 623-628. DOI: 10.1016/s0141- 0229(03)00020-6.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04051df6-b301-416f-8707-58c231052e59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.