PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surrogate methods for determining profiles of material properties of planar test objects with accumulation of apriori information about tchem

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
New methods for identifying the material properties of planar objects as a result of measurements by the eddy current method are proposed. The methods are based on the latest surrogate strategies and advanced optimization techniques that improve efficiency and reduce resource consumption of problem solutions, and balance computational complexity with the accuracy of the results. High-performance metamodels for global surrogate optimization are based on deep truly meaningful fully connected neural networks, serving as an additional function of accumulating apriori information about objects. High accuracy of the approximation of the multidimensional response surface, which is determined by the “exact” electrodynamic model of the testing process, is ensured by performing calculations according to the computer design of a homogeneous experiment with a low weighted symmetric centered discrepancy. The results of numerical experiments performed for full and reduced dimensional search spaces, which can be obtained by linear transformations using the principal component method, are presented. The verification of the methods proved their sufficiently high accuracy and computational performance.
Rocznik
Strony
183--200
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr., wz.
Twórcy
  • Instrumentation, Mechatronics and Computer Technologies Department, Cherkasy State Technological University, Blvd. Shevchenka, 460, 18006, Cherkasy, Ukraine
  • Instrumentation, Mechatronics and Computer Technologies Department, Cherkasy State Technological University, Blvd. Shevchenka, 460, 18006, Cherkasy, Ukraine
  • Instrumentation, Mechatronics and Computer Technologies Department, Cherkasy State Technological University, Blvd. Shevchenka, 460, 18006, Cherkasy, Ukraine
  • Instrumentation, Mechatronics and Computer Technologies Department, Cherkasy State Technological University, Blvd. Shevchenka, 460, 18006, Cherkasy, Ukraine
Bibliografia
  • [1] Xia Z., Huang R., Chen Z., Yu K., Zhang Z., Salas-Avila J.R., Yin W., Eddy current measurement for planar structures, Sensors, vol. 22, no. 22, 8695 (2022), DOI: 10.3390/s22228695.
  • [2] Lu M., Forward and inverse analysis for non-destructive testing based on electromagnetic computation methods, PhD Thesis, The University of Manchester (United Kingdom) (2018).
  • [3] Campbell S.D., Sell D., Jenkins R.P., Whiting E.B., Fan J.A., Werner D.H., Review of numerical optimization techniques for meta-device design, Optical Materials Express, vol. 9, no. 4, pp. 1842–1863 (2019), DOI: 10.1364/OME.9.001842.
  • [4] Halchenko V.Y., Tychkov V.V., Storchak A.V., Trembovetska R.V., Reconstruction of surface radial profiles of the electrophysical characteristics of cylindrical objects during eddy current measurements with a priori data, The selection formation for the surrogate model construction, Ukrainskyi Metrolohichnyi Zhurnal, no. 1, pp. 35–50 (2020), DOI: 10.24027/2306-7039.1.2020.204226.
  • [5] Trembovetska R., Halchenko V., Bazilo C., Inverse multi-parameter identification of plane objects electrophysical parameters profiles by eddy-current method, In Smart Technologies in Urban Engineering: Proceedings of STUE-2022, Cham: Springer International Publishing, pp. 202–212 (2022), DOI: 10.1007/978-3-031-20141-7_19.
  • [6] Tesfalem H., Hampton J., Fletcher A.D., Brown M., Peyton A.J., Electrical resistivity reconstruction of graphite moderator bricks from multi-frequency measurements and artificial neural networks, IEEE Sensors Journal, vol. 21, no. 15, pp. 17005–17016 (2021), DOI: 10.1109/JSEN.2021.3080127.
  • [7] Hampton J., Fletcher A., Tesfalem H., Peyton A., Brown M., A comparison of non-linear optimisation algorithms for recovering the conductivity depth profile of an electrically conductive block using eddy current inspection, NDT & E International, vol. 125, 102571 (2022), DOI: 10.1016/j.ndteint.2021.102571.
  • [8] Tesfalem H., Peyton A.J., Fletcher A.D., Brown M., Chapman B., Conductivity profiling of graphite moderator bricks from multifrequency eddy current measurements, IEEE Sensors Journal, vol. 20, no. 9, pp. 4840–4849 (2020), DOI: 10.1109/JSEN.2020.2965201.
  • [9] Xu J., Wu J., Xin W., Ge Z., Measuring ultrathin metallic coating properties using swept-frequency eddy-current technique, IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 8, pp. 5772–5781 (2020), DOI: 10.1109/tim.2020.2966359.
  • [10] Xu J., Wu J., Xin W., Ge Z., Fast measurement of the coating thickness and conductivity using eddy currents and plane wave approximation, IEEE Sensors Journal, vol. 21, no. 1, pp. 306–314 (2020), DOI: 10.1109/jsen.2020.3014677.
  • [11] Huang P., Zhao J., Li Z., Pu H., Ding Y., Xu L., Xie Y., Decoupling conductivity and permeability using sweep-frequency eddy current method, IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1–11 (2023), DOI: 10.1109/tim.2023.3242017.
  • [12] Hampton J., Tesfalem H., Fletcher A., Peyton A., Brown M., Reconstructing the conductivity profile of a graphite block using inductance spectroscopy with data-driven techniques, Insight-Non-Destructive Testing and Condition Monitoring, vol. 63, no. 2, pp. 82–87 (2021), DOI: 10.1784/insi.2021.63.2.82.
  • [13] Yi Q., Tian G.Y., Malekmohammadi H., Laureti S., Ricci M., Gao S., Inverse reconstruction of fibre orientation in multilayer CFRP using forward FEM and eddy current pulsed thermography, NDT & E International, vol. 122, 102474 (2021), DOI: 10.1016/j.ndteint.2021.102474.
  • [14] Halchenko V.Y., Storchak A.V., Trembovetska R.V., Tychkov V.V., The creation of a surrogate model for restoring surface profiles of the electrophysical characteristics of cylindrical objects, Ukrainian Metrological Journal, no. 3, pp. 27–35 (2020), DOI: 10.24027/2306-7039.3.2020.216824.
  • [15] Bowler N., Eddy-Current Nondestructive Evaluation, Springer New York (2019).
  • [16] Lei Y.Z., General series expression of eddy-current impedance for coil placed above multi-layer plate conductor, Chinese Physics B, vol. 27, no. 6, 060308 (2018), DOI: 10.1088/1674-1056/27/6/060308.
  • [17] Uzal E., Theory of eddy current inspection of layered metals, Iowa State University (1992).
  • [18] Zhang J., Yuan M., Xu Z., Kim H.J., Song S.J., Analytical approaches to eddy current nondestructive evaluation for stratified conductive structures, Journal of Mechanical Science and Technology, vol. 29, pp. 4159–4165 (2015), DOI: 10.1007/s12206-012-0911-8.
  • [19] Theodoulidis T.P., Kriezis E.E., Eddy current canonical problems (with applications to nondestructive evaluation), Tech Science Press (2006).
  • [20] Halchenko V.Y., Trembovetska R.V., Bazilo C.V., Tychkova N.B., Computer simulation of the process of profiles measuring of objects electrophysical parameters by surface eddy current probes, in Lecture Notes on Data Engineering and Communications Technologies: Proceedings of ITEST 2022, Springer Cham, vol. 178, pp. 411–424 (2023), DOI: 10.1007/978-3-031-35467-0_25.
  • [21] Jiang P., Zhou Q., Shao X., Surrogate model-based engineering design and optimization, in: Surrogate Model-Based Engineering Design and Optimisation, Springer Tracts in Mechanical Engineering, Springer, Singapore (2020).
  • [22] Halchenko V.Y., Trembovetska R.V., Tychkov V.V., Surrogate synthesis of frame eddy current probes with uniform sensitivity in the testing zone, Metrology and Measurement Systems, vol. 28, no. 3, pp. 551–564 (2021), DOI: 10.24425/mms.2021.137128.
  • [23] Halchenko V.Y., Trembovetska R.V., Tychkov V.V., Surrogate synthesis of excitation systems for frame tangential eddy current probes, Archives of Electrical Engineering, vol. 70, no. 4, pp. 743–757 (2021), DOI: 10.24425/aee.2021.138258.
  • [24] Kuznetsov B., Bovdui I., Nikitina T., Kolomiets V., Kobylianskyi B., Surrogate synthesis of system of active shielding of magnetic field generated by group of overhead power lines, in IEEE EUROCON 2021-19th International Conference on Smart Technologies, pp. 381–384 (2021).
  • [25] Fang K., Liu M.Q., Qin H., Zhou Y.D., Theory and Application of Uniform Experimental Designs, Springer, Singapore (2018).
  • [26] Xu Q., Ping H., Lin D.K.J., Liu M.-Q., Zhou Y., Theory and application of uniform designs, Scientia Sinica Mathematica, vol. 50, no. 5, 561 (2020), DOI: 10.1360/SSM-2020-0065.
  • [27] Wang Y., Sun F., Xu H., On design orthogonality, maximin distance, and projection uniformity for computer experiments, Journal of the American Statistical Association, vol. 117, iss. 537, pp. 375–385 (2022), DOI: 10.1080/01621459.2020.1782221.
  • [28] Halchenko V.Y., Yakimov A.N., Ostapuschenko D.L., Global optimum search of functions using multiagent swarm optimisation hybrid with evolutionary composition formation of population, Information Technology (in Russian), no. 10, pp. 9–16 (2010).
  • [29] Halchenko V.Y., Trembovetska R.V., Tychkov V.V., Storchak A.V., Nonlinear surrogate synthesis of the surface circular eddy current probes, Przegl˛ad Elektrotechniczny, no. 9, pp. 76–82 (2019), DOI: 10.15199/48.2019.09.15.
  • [30] Kuznetsov B., Bovdui I., Nikitina T., Optimal design of system of active shielding of magnetic field generated by overhead power lines, in 2021 IEEE 16th International Conference on the Experience of Designing and Application of CAD Systems (CADSM), pp. 4–1 (2021).
  • [31] Géron A., Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, O’Reilly Media, Inc. (2022).
  • [32] Géron A., Deep Learning with TensorFlow, Dunod (2017).
  • [33] Raschka S., Machine learning (2017).
  • [34] Wang J., Zhou J., Chen X., Data-driven fault detection and reasoning for industrial monitoring, Springer Nature (2022).
  • [35] Halchenko V.Y., Trembovetska R.V., Tychkov V.V., Storchak A.V., The construction of effective multidimensional computer designs of experiments based on a quasi-random additive recursive Rd– sequence, Applied Computer Systems, vol. 25, no. 1, pp. 70–76 (2020), DOI: 10.2478/acss-2020-0009.
  • [36] Ke X., Zhang R., Ye H.J., Two-and three-level lower bounds for mixture L2-discrepancy and construction of uniform designs by threshold accepting, Journal of Complexity, vol. 31, no. 5, pp. 741–753 (2015), DOI: 10.1016/j.jco.2015.01.002.
  • [37] He L., Qin H., Ning J., Weighted symmetrized centered discrepancy for uniform design, Communications in Statistics-Simulation and Computation, vol. 51, no. 8, pp. 1–11 (2020), DOI: 10.1080/03610918.2020.1744063.
  • [38] Douglas C.M., Design and Analysis of Experiments, Wiley, London (2009).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-040453d9-b2a1-471e-8ef3-0cb5d20656af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.