PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A decision support model for mitigating supply chain risks based on a modified fmea, multi-objective optimization and multi-criteria decision-making approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recent years have seen a huge development in the subject of supply chain risk management. In this increasingly uncertain world, the use of practical and effective tools for decision making and risk mitigation has become more necessary than ever. In this research, mitigation strategies for a tier one multinational company operating in the automotive industry and providing an assembly operation to final customer Renault Tanger and Renault SOMACA were prioritized according to their effectiveness, as well as their implementation costs. Based on research in the literature and the opinions of experts in the field. 44 risks and 55 mitigation strategies were identified. FMEA (Failure Modes and Effects Analysis) method was used based on the latest AIAG 2019 edition to filter and identify the risks to be prioritized, we used then a multi-objective optimization approach to identify the mitigation strate-gies that constitute the Pareto front for each of the risks and finally used the EDAS method for the final ranking of the strategies. Our case revealed that strategies like ensuring elaborating a contingency planning and defining the responsibilities, imposing contractual obligations on subcontractors, applying a flexible supply contract were found to be relevant risk mitigation strategies for the company. Managers interested in mitigating risk can deploy this model to prioritize risk mitigation strategies.
Wydawca
Rocznik
Tom
Strony
87--102
Opis fizyczny
Bibliogr. 68 poz., rys., tab.
Twórcy
autor
  • Department of Science and Technology National School of Applied Sciences Tetouan Abdelmalek Essaadi University, Marocco
  • National School of Applied Sciences Tetouan Abdelmalek Essaadi University, Marocco
Bibliografia
  • 1 A. Moktadir et al., Analysis of risk factors in sustainable supply chain management in an emerging economy of leather industry, Journal of Cleaner Production, vol. 283, p. 124641, févr. 2021, doi: 10.1016/j.jclepro.2020.124641.
  • 2 A.S. Raihan, S.M. Ali, S. Roy, M. Das, G. Kabir, et S. K. Paul, Integrated Model for Soft Drink Industry Supply Chain Risk Assessment: Implications for Sustainability in Emerging Economies, Int. J. Fuzzy Syst., vol. 24, no 2, pp. 1148 1169, mars 2022, doi: 10.1007/s40815-020-01039-w.
  • 3 A.L. Romano, L.M.D.F. Ferreira, S.S.F.S. Caeiro, Modelling Sustainability Risk in the Brazilian Cosmetics Industry, Sus-tainability, vol. 13, no 24, p. 13771, déc. 2021, doi: 10.3390/su132413771.
  • 4 M. Elmsalmi, W. Hachicha, A.M. Aljuaid, Prioritization of the Best Sustainable Supply Chain Risk Management Prac-tices Using a Structural Analysis Based-Approach, Sustain-ability, vol. 13, no 9, p. 4608, avr. 2021, doi: 10.3390/su13094608.
  • 5 K. Zimmer, M. Fröhling, P. Breun, F. Schultmann, Assessing social risks of global supply chains: A quantitative analytical approach and its application to supplier selection in the German automotive industry, Journal of Cleaner Produc-tion, vol. 149, pp. 96 109, avr. 2017, doi: 10.1016/j.jcle-pro.2017.02.041.
  • 6 J.P. Zeiringer, S. Durst, S. Thalmann, Show Me What You Do and I Will Tell You Who You Are: A Cluster Typology of Sup-ply Chain Risk Management in SMEs, JTAER, vol. 17, no 1, pp. 345 359, mars 2022, doi: 10.3390/jtaer17010018.
  • 7 E. Anuat, D.L. Van Bossuyt, A. Pollman, Energy Resilience Impact of Supply Chain Network Disruption to Military Mi-crogrids, Infrastructures, vol. 7, no 1, p. 4, déc. 2021, doi: 10.3390/infrastructures7010004.
  • 8 M.Z. Alvarenga, M.P.V. de Oliveira, H. Zanquetto Filho, K.C. Desouza, P.S. Ceryno, Is your supply chain ready for the next disruption? Building resilient chains, Rev. adm. em-pres., vol. 62, no 1, p. e2020-0766, 2022, doi: 10.1590/s0034-759020220106.
  • 9 F.E. Essaber, R. Benmoussa, R. De Guio, S. Dubois, A Hybrid Supply Chain Risk Management Approach for Lean Green Performance Based on AHP, RCA and TRIZ: A Case Study, Sustainability, vol. 13, no 15, p. 8492, juill. 2021, doi: 10.3390/su13158492.
  • 10 Q. Zhang, W. Fan, J. Lu, S. Wu, X. Wang, Research on Dy-namic Analysis and Mitigation Strategies of Supply Chains under Different Disruption Risks, Sustainability, vol. 13, no 5, p. 2462, févr. 2021, doi: 10.3390/su13052462.
  • 11 Brexit will increase food supply chain costs, warn business groups, BBC News, 13 janvier 2021. Consulté le: 5 juin 2022. [En ligne]. Disponible sur: https://www.bbc.com/news/business-55632071.
  • 12 V. Yee P.S. Goodman, Suez Canal Blocked After Giant Con-tainer Ship Gets Stuck, The New York Times, 24 mars 2021. Consulté le: 5 juin 2022. [En ligne]. Disponible sur: https://www.nytimes.com/2021/03/24/world/middleeast/suez-canal-blocked-ship.html.
  • 13 M. Sweney, Global shortage in computer chips “reaches crisis point”, The Guardian, 21 mars 2021. Consulté le: 5 juin 2022. [En ligne]. Disponible sur: https://www.theguardian.com/business/2021/mar/21/global-shortage-in-computer-chips-reaches-crisis-point.
  • 14 W. Tan, An “aggressive” fight over containers is causing shipping costs to rocket by 300%, CNBC. Consulté le: 5 juin 2022. [En ligne]. Disponible sur: https://www.cnbc.com/2021/01/22/shipping-container-shortage-is-causing-shipping-costs-to-rise.html.
  • 15 G. Group, Crazy steel shortage 2021: Where to get stainless steel now? Consulté le: 5 juin 2022. [En ligne]. Disponible sur: https://steelnews.biz/crazy-steel-shortage-2021-where-get-stainless-steel/.
  • 16 How a Russia-Ukraine conflict would impact procurement and supply, Supply Management. Consulté le: 5 juin 2022. [En ligne]. Disponible sur: https://www.cips.org/supply-management/news/2022/february/how-a-russia-ukraine-conflict-would-impact-procurement-and-supply/.
  • 17 AUTOMOTIVE. Consulté le: 5 juin 2022. [En ligne]. Disponible sur: http://www.mcinet.gov.ma/en/content/automotive-0.
  • 18 Automotives – Morocco Now. Consulté le: 23 septembre 2023. [En ligne]. Disponible sur: https://www.morocco-now.com/automotives/.
  • 19 Y. Fan M. Stevenson, A review of supply chain risk manage-ment: definition, theory, and research agenda, IJPDLM, vol. 48, no 3, pp. 205 230, mars 2018, doi: 10.1108/IJPDLM-01-2017-0043.
  • 20 C. Elock Son, Supply Chain Risk Management: A Review of Thirteen Years of Research, AJIBM, vol. 08, no 12, pp. 2294 2320, 2018, doi: 10.4236/ajibm.2018.812154.
  • 21 G.C. Dias, C.T. Hernandez, U.R. de Oliveira, Supply chain risk management and risk ranking in the automotive indus-try, Gest. Prod., vol. 27, no 1, p. e3800, 2020, doi: 10.1590/0104-530x3800-20.
  • 22 R. Tummala T. Schoenherr, Assessing and managing risks using the Supply Chain Risk Management Process (SCRMP), Supply Chain Management: An International Journal, vol. 16, no 6, pp. 474 483, sept. 2011, doi: 10.1108/13598541111171165.
  • 23 J.-H. Thun D. Hoenig, An empirical analysis of supply chain risk management in the German automotive industry, In-ternational Journal of Production Economics, vol. 131, no 1, pp. 242 249, mai 2011, doi: 10.1016/j.ijpe.2009.10.010.
  • 24 C. Blome T. Schoenherr, Supply chain risk management in financial crises—A multiple case-study approach, International Journal of Production Economics , vol. 134, no 1, pp. 43‑57, nov. 2011, doi: 10.1016/j.ijpe.2011.01.002.
  • 25 S.-R. Fartaj, G. Kabir, V. Eghujovbo, S.M. Ali, S.K. Paul, Modeling transportation disruptions in the supply chain of au-tomotive parts manufacturing company, International Journal of Production Economics, vol. 222, p. 107511, avr. 2020, doi: 10.1016/j.ijpe.2019.09.032.
  • 26 M.A. Adeseun, A.I. Anosike, J.A. Garza Reyes, M. Al-Talib, Supply chain risk perception: understanding the gap be-tween theory and practice, IFAC-PapersOnLine, vol. 51, no 11, pp. 1701 1706, 2018, doi: 10.1016/j.ifacol.2018.08.211.
  • 27 V. Kumar et al., An empirical analysis of supply and manu-facturing risk and business performance: a Chinese manu-facturing supply chain perspective, SCM, vol. 23, no 6, pp. 461 479, sept. 2018, doi: 10.1108/SCM-10-2017-0319.
  • 28 J.V. Blackhurst, K.P. Scheibe, D.J. Johnson, Supplier risk as-sessment and monitoring for the automotive industry, Int Jnl Phys Dist & Log Manage, vol. 38, no 2, pp. 143 165, mars 2008, doi: 10.1108/09600030810861215.
  • 29 R. Rajesh V. Ravi, Analyzing drivers of risks in electronic supply chains: a grey–DEMATEL approach, Int J Adv Manuf Technol, vol. 92, no 1 4, pp. 1127 1145, sept. 2017, doi: 10.1007/s00170-017-0118-3.
  • 30 R. Alikhani, S.A. Torabi, N. Altay, Strategic supplier selec-tion under sustainability and risk criteria, International Journal of Production Economics, vol. 208, pp. 69 82, févr. 2019, doi: 10.1016/j.ijpe.2018.11.018.
  • 31 I. Mzougui, S. Carpitella, A. Certa, Z. El Felsoufi, J. Izquierdo, Assessing Supply Chain Risks in the Automotive Industry through a Modified MCDM-Based FMECA, Processes, vol. 8, no 5, p. 579, mai 2020, doi: 10.3390/pr8050579.
  • 32 M. Louis M. Pagell, Categorizing Supply Chain Risks: Re-view, Integrated Typology and Future Research, in Revisit-ing Supply Chain Risk, vol. 7, G. A. Zsidisin et M. Henke, Éd., in Springer Series in Supply Chain Management, vol. 7, Cham: Springer International Publishing, 2019, pp. 329 366. doi: 10.1007/978-3-030-03813-7_20.
  • 33 J. Silva, C. Araujo, L. Marques, Siloed Perceptions in Phar-maceutical Supply Chain Risk Management: A Brazilian Per-spective, Latin American Business Review, vol. 21, no 3, pp. 223 254, juill. 2020, doi: 10.1080/10978526.2020.1731315.
  • 34 M. Ethirajan, T. Arasu M, J. Kandasamy, V.K.E.K,S.P. Nadeem, A. Kumar, Analysing the risks of adopting circular economy initiatives in manufacturing supply chains, Bus Strat Env, vol. 30, no 1, pp. 204 236, janv. 2021, doi: 10.1002/bse.2617.
  • 35 E.V. Kalinin, L.L. Kalinina, O.S. Norkina, Modern concept analysis of failure modes and consequences for quality as-surance of products and processes, IOP Conf. Ser.: Mater. Sci. Eng., vol. 966, no 1, p. 012092, nov. 2020, doi: 10.1088/1757-899X/966/1/012092.
  • 36 Toyota recalls 1.7M vehicles in N. America to fix air bags|KSL.com. Consulté le: 18 juin 2022. [En ligne]. Disponible sur: https://www.ksl.com/article/46464753/toyota-recalls-17m-vehicles-in-n-america-to-fix-air-bags.
  • 37 42,000 more Mazda cars recalled because of spider prob-lem – Los Angeles Times. Consulté le: 18 juin 2022. [En ligne]. Disponible sur: https://www.latimes.com/business/autos/la-fi-hy-autos-spiders-mazda-recall-20140407-story.html.
  • 38 E.F. Ramly et H. Atan, FMEA AIAG-VDA – Commentary and Case Study, p. 8, 2020.
  • 39 FMEA AP (Action Priority). Consulté le: 18 septembre 2023. [En ligne]. Disponible sur: https://relyence.com/help/user-guide/fmea-ap.html.
  • 40 C. Tang B. Tomlin, The power of flexibility for mitigating supply chain risks, International Journal of Production Eco-nomics, vol. 116, no 1, pp. 12 27, nov. 2008, doi: 10.1016/j.ijpe.2008.07.008.
  • 41 M. Nishat Faisal, D.K. Banwet, R. Shankar, Supply chain risk mitigation: modeling the enablers, Business Process Man-agement Journal, vol. 12, no 4, pp. 535 552, juill. 2006, doi: 10.1108/14637150610678113.
  • 42 Z. (Ben) Yang, G. Aydın, V. Babich, D.R. Beil, Supply Disrup-tions, Asymmetric Information, and a Backup Production Option, Management Science, vol. 55, no 2, pp. 192 209, févr. 2009, doi: 10.1287/mnsc.1080.0943.
  • 43 X. Wang, P. Tiwari, X. Chen, Communicating supply chain risks and mitigation strategies: a comprehensive frame-work, Production Planning & Control, vol. 28, no 13, pp. 1023 1036, oct. 2017, doi: 10.1080/09537287.2017.1329562.
  • 44 T. Wakolbinger, J.M. Cruz, Supply chain disruption risk management through strategic information acquisition and sharing and risk-sharing contracts, International Jour-nal of Production Research, vol. 49, no 13, pp. 4063 4084, juill. 2011, doi: 10.1080/00207543.2010.501550.
  • 45 R. Rajesh, A grey-layered ANP based decision support model for analyzing strategies of resilience in electronic supply chains, Engineering Applications of Artificial Intelli-gence, vol. 87, p. 103338, janv. 2020, doi: 10.1016/j.en-gappai.2019.103338.
  • 46 O. Kırılmaz S. Erol, A proactive approach to supply chain risk management: Shifting orders among suppliers to miti-gate the supply side risks, Journal of Purchasing and Supply Management, vol. 23, no 1, pp. 54 65, janv. 2017, doi: 10.1016/j.pursup.2016.04.002.
  • 47 R. Sharma, A. Shishodia, S. Kamble, A. Gunasekaran, A. Bel-hadi, Agriculture supply chain risks and COVID-19: mitiga-tion strategies and implications for the practitioners, Inter-national Journal of Logistics Research and Applications, pp. 1 27, oct. 2020, doi: 10.1080/13675567.2020.1830049.
  • 48 S.S. Talluri, T.J. Kull, H. Yildiz, J. Yoon, Assessing the Effi-ciency of Risk Mitigation Strategies in Supply Chains, J Bus Logist, vol. 34, no 4, pp. 253 269, déc. 2013, doi: 10.1111/jbl.12025.
  • 49 A. Ghadge, S. Dani, M. Chester, R. Kalawsky, A systems ap-proach for modelling supply chain risks, Supply Chain Man-agement: An International Journal, vol. 18, no 5, pp. 523 538, juill. 2013, doi: 10.1108/SCM-11-2012-0366.
  • 50 P. Manhart, J. K. Summers, et J. Blackhurst, A Meta-Ana-lytic Review of Supply Chain Risk Management: Assessing Buffering and Bridging Strategies and Firm Performance, J Supply Chain Manag, vol. 56, no 3, pp. 66 87, juill. 2020, doi: 10.1111/jscm.12219.
  • 51 D. Mishra, R.R.K. Sharma, S. Kumar, R. Dubey, Bridging and buffering: Strategies for mitigating supply risk and improv-ing supply chain performance, International Journal of Pro-duction Economics, vol. 180, pp. 183 197, oct. 2016, doi: 10.1016/j.ijpe.2016.08.005.
  • 52 Y. Can Saglam, S. Yildiz Çankaya, B. Sezen, Proactive risk mitigation strategies and supply chain risk management performance: an empirical analysis for manufacturing firms in Turkey, JMTM, vol. 32, no 6, pp. 1224 1244, sept. 2021, doi: 10.1108/JMTM-08-2019-0299.
  • 53 S. K. Sharma et A. Bhat, Risk Mitigation in Automotive Sup-ply Chain: An Empirical Exploration of Enablers to Imple-ment Supply Chain Risk Management, Global Business Re-view, vol. 17, no 4, pp. 790 805, août 2016, doi: 10.1177/0972150916645678.
  • 54 A. Majumdar, S.K. Sinha, K. Govindan, Prioritising risk miti-gation strategies for environmentally sustainable clothing supply chains: Insights from selected organisational theo-ries, Sustainable Production and Consumption, vol. 28, pp. 543 555, oct. 2021, doi: 10.1016/j.spc.2021.06.021.
  • 55 M.S. Sodhi C.S. Tang, Strategic Approaches for Mitigating Supply Chain Risks, in Managing Supply Chain Risk, vol. 172, in International Series in Operations Research & Man-agement Science, vol. 172. , Boston, MA: Springer US, 2012, pp. 95 108. doi: 10.1007/978-1-4614-3238-8_7.
  • 56 L.B. Araujo, J. Tessaro, R. Sardim, Supply Chain Risk Man-agement Applied to Brazilian Automotive Industry, pré-senté à 25th SAE BRASIL International Congress and Display, oct. 2016, p. 2016-36 0171. doi: 10.4271/2016-36-0171.
  • 57 G. Hariharan, Supply Chain Risk Mitigation Strategies and Its Performance of SMEs, p. 10.
  • 58 E. Dehdar, A. Azizi, S. Aghabeigi, Supply Chain Risk Mitiga-tion Strategies in Automotive Industry: A Review, in 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Bangkok: IEEE, déc. 2018, pp. 84 88. doi: 10.1109/IEEM.2018.8607626.
  • 59 U.R. de Oliveira, F.A.S. Marins, H.M. Rocha, V.A.P. Salo-mon, The ISO 31000 standard in supply chain risk manage-ment, Journal of Cleaner Production, vol. 151, pp. 616 633, mai 2017, doi: 10.1016/j.jclepro.2017.03.054.
  • 60 Dr. A Sahaya Sudha et NIRMALA COLLEGE FOR WOMEN, COIMBATORE, Application of EDAS Method on Water Re-quirement in Agriculture, IJERT, vol. V8, no 12, p. IJERTV8IS120283, déc. 2019, doi: 10.17577/IJERTV8IS120283.
  • 61 S.K. Sahoo B.B. Choudhury, Optimal selection of an electric power wheelchair using an integrated COPRAS and EDAS approach based on Entropy weighting technique, 10.5267/j.dsl, vol. 11, no 1, pp. 21 34, 2022, doi: 10.5267/j.dsl.2021.10.002.
  • 62 M. Keshavarz Ghorabaee, E.K. Zavadskas, L. Olfat, Z. Tur-skis, Multi-Criteria Inventory Classification Using a New Method of Evaluation Based on Distance from Average So-lution (EDAS), Informatica, vol. 26, no 3, pp. 435 451, janv. 2015, doi: 10.15388/Informatica.2015.57.
  • 63 G. Chiandussi, M. Codegone, S. Ferrero, F.E. Varesio, Com-parison of multi-objective optimization methodologies for engineering applications, Computers & Mathematics with Applications, vol. 63, no 5, pp. 912 942, mars 2012, doi: 10.1016/j.camwa.2011.11.057.
  • 64 D. Peri, Direct Tracking of the Pareto Front of a Multi-Ob-jective Optimization Problem, JMSE, vol. 8, no 9, p. 699, sept. 2020, doi: 10.3390/jmse8090699.
  • 65 S.C. Cerda-Flores, A.A. Rojas-Punzo, F. Nápoles-Rivera, Ap-plications of Multi-Objective Optimization to Industrial Processes: A Literature Review, Processes, vol. 10, no 1, p. 133, janv. 2022, doi: 10.3390/pr10010133.
  • 66 K. Ignáczová, FMEA (Failure Mode and Effects Analysis) and Propos al of Risk Minimizing in Storage Processes for Auto-motive Client, AL, vol. 3, no 1, pp. 15 18, mars 2016, doi: 10.22306/al.v3i1.54.
  • 67 H. Ghasemian Q. Zeeshan, Failure Mode and Effect Analy-sis (FMEA) of Aeronautical Gas Turbine using the Fuzzy Risk Priority Ranking (FRPR) Approach, vol. 7, no 1, p. 12, 2017.
  • 68 Z. Islam P. Chakraborty, Importance of Failure Modes and Effect Analysis Application for Risk Analysis in Barapukuria Coal Mine, Bangladesh, vol. 8, no 5, p. 9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0400fd35-5f79-4d0e-a8bf-618228a27ed7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.