Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The growing number of distributed renewable energy sources and dynamic constant-power loads (e.g. electric vehicle charging stations) pose new challenges for network operators. These changes result in alterations to network load profiles and load flows, leading to greater voltage volatility. One effective solution to these problems can be the use of automatic voltage regulators (AVRs), which stabilize and symmetrize voltage output, whether at distribution transformers (DTs) or elsewhere in the distribution network. The device developed by the authors consists of two bidirectional power converters and three single-phase transformers connected in series to the low-voltage grid as a stabilizer. The proposed control system provides accurate and fast regulation of the AVR output voltage (within the range of ±10% of the nominal grid voltage), with each phase being independently adjusted, regardless of the type of power load. The article includes test results demonstrating selected functionalities of the developed AVR. The physical model of the device discussed in the article is a research component of the LINTE2 laboratory of the Gdańsk University of Technology.
Słowa kluczowe
Rocznik
Tom
Strony
art. no. e150331
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- Arex Sp. z .o.o., Hutnicza 3, 81-212 Gdynia, Poland
autor
- Faculty of Electrical and Control Engineering, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland
autor
- Faculty of Electrical and Control Engineering, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland
autor
- Faculty of Electrical and Control Engineering, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland
autor
- Faculty of Electrical and Control Engineering, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland
autor
- Faculty of Electrical and Control Engineering, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland
autor
- Faculty of Electrical and Control Engineering, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland
autor
- Faculty of Electrical and Control Engineering, Gdansk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdansk, Poland
Bibliografia
- [1] A.G. Anastasiadis, G.P. Kondylis, A. Polyzakis, and G. Vokas, “Effects of increased electric vehicles into a distribution network,” Energy Procedia – Technologies and Materials for Renewable Energy, Environment and Sustainability (TMREES), vol. 157, pp. 586–593, 2019, doi: 10.1016/j.egypro.2018.11.223.
- [2] V. Boglou, C.-S. Karavas, K. Arvanitis, and A. Karlis, “A fuzzy energy management strategy for the coordination of electric vehicle charging in low voltage distribution grids,” Energies, vol. 13, no. 14, p. 3709, 2020, doi: 10.3390/en13143709.
- [3] J. Hu, Z. Li, J. Zhu, and J.M. Guerrero, “Voltage stabilization: A critical step toward high photovoltaic penetration,” IEEE Ind. Electron. Mag., vol. 13, no. 2, pp. 17–30, 2019, doi: 10.1109/MIE.2019.2906844.
- [4] T.S. Ustun, J. Hashimoto, and K. Otani, “Impact of smart inverters on feeder hosting capacity of distribution networks,” IEEE Access, vol. 7, pp. 163 526–163 536, 2019, doi: 10.1109/ACCESS.2019.2952569.
- [5] A. Carreno, M. Perez, C. Baier, A. Huang, S. Rajendran, and M. Malinowski, “Configurations, power topologies and applications of hybrid distribution transformers,” Energies, vol. 14, no. 5, p. 1215, 2021, doi: 10.3390/en14051215.
- [6] R. Małkowski, M. Izdebski, and P. Miller, “Adaptive algorithm of a tap-changer controller of the power transformer supplying the radial network reducing the risk of voltage collapse,” Energies, vol. 13, no. 20, p. 5403, 2020, doi: 10.3390/en13205403.
- [7] J. Burkard and J. Biela, “Hybrid transformers for power quality enhancements in distribution grids - comparison to alternative concepts,” in NEIS 2018; Conference on Sustainable Energy Supply and Energy Storage Systems, 2018, pp. 1–6.
- [8] —, “Evaluation of topologies and optimal design of a hybrid distribution transformer,” in 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), 2015, pp. 1–10, doi: 10.1109/EPE.2015.7309097.
- [9] J. de Oliveira Quevedo et al., “Analysis and design of an electronic on-load tap changer distribution transformer for automatic voltage regulation,” IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 883–894, 2017, doi: 10.1109/TIE.2016.2592463.
- [10] J.E. Huber and J.W. Kolar, “Solid-state transformers: On the origins and evolution of key concepts,” IEEE Ind. Electron. Mag., vol. 10, no. 3, pp. 19–28, 2016, doi: 10.1109/MIE.2016.2588878.
- [11] H. Açıkgöz, O.F. Keçecioğlu, A. Gani, C. Yıldız, and M. Şekkeli, “Optimal control and analysis of three phase electronic power transformers,” Procedia-Soc. Behav. Sci., vol. 195, pp. 2412–2420, 2015, doi: 10.1016/j.sbspro.2015.06.240.
- [12] Y. Miao, “Research on power electronic transformer applied in AC/DC hybrid distribution networks,” Glob. Energy Interconnect., vol. 1, no. 3, p. 8, 2018.
- [13] J.E. Huber and J. W. Kolar, “Applicability of solid-state transformers in today’s and future distribution grids,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 317–326, 2019, doi: 10.1109/TSG.2017.2738610.
- [14] R.M. Strzelecki, Power Electronics in Smart Electrical Energy Networks. Springer Science & Business Media, 2008.
- [15] M.M. Haque, M. S. Ali, P. Wolfs, and F. Blaabjerg, “A UPFC for voltage regulation in LV distribution feeders with a DC-link ripple voltage suppression technique,” IEEE Trans. Ind. Appl., vol. 56, no. 6, pp. 6857–6870, 2020, doi: 10.1109/TIA.2020.3023068.
- [16] A. Lashkar Ara, A. Kazemi, and S. Nabavi Niaki, “Modelling of optimal unified power flow controller (oupfc) for optimal steady-state performance of power systems,” Energy Conv. Manag., vol. 52, no. 2, pp. 1325 –1333, 2011, doi: 10.1016/j.enconman.2010.09.030.
- [17] V. Khadkikar, “Enhancing electric power quality using UPQC: A comprehensive overview,” IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2284–2297, 2012, doi: 10.1109/TPEL.2011.2172001.
- [18] X. Zhao, X. Chai, X. Guo, A. Waseem, X. Wang, and C. Zhang, “Impedance matching-based power flow analysis for UPQC in three-phase four-wire systems,” Energies, vol. 14, no. 9, p. 2702, 2021, doi: 10.3390/en14092702.
- [19] M. Hosseini, H. Shayanfar, and M. Fotuhi-Firuzabad, “Modeling of unified power quality conditioner (UPQC) in distribution systems load flow,” Energy Conv. Manag., vol. 50, no. 6, pp. 1578–1585, Jun. 2009, doi: 10.1016/j.enconman.2009.02.006.
- [20] S. Bala, D. Das, E. Aeloiza, A. Maitra, and S. Rajagopalan, “Hybrid distribution transformer: Concept development and field demonstration,” in 2012 IEEE Energy Conversion Congress and Exposition (ECCE), 2012, pp. 4061–4068, doi: 10.1109/ECCE.2012.6342271.
- [21] P. Costa, G. Paraíso, S.F. Pinto, and J.F. Silva, “A four-leg matrix converter based hybrid distribution transformer for smart and resilient grids,” Electr. Power Syst. Res., vol. 203, p. 107650, 2022, doi: 10.1016/j.epsr.2021.107650.
- [22] M. Díaz-Ojeda, J. Rodríguez-Rodríguez, J. Hernández-Sánchez, F. Trillaud, J. Olivares-Galván, and R. Escarela-Pérez, “Cross phases hybrid transformer for managing and improving the energy quality,” Int. J. Electr. Power Energy Syst., vol. 131, p. 107005, Oct. 2021, doi: 10.1016/j.ijepes.2021.107005.
- [23] A. Cichowski, W. Sleszynski, J. Nieznanski, and P. Szczepankowski, “Compensation of dead time effects for shunt active power filters,” in 2015 IEEE International Conference on Industrial Technology (ICIT), 2015, pp. 2241–2247, doi: 10.1109/ICIT. 2015.7125428.
- [24] R. Strzelecki, W. Matelski, R. Małkowski, V. Tomasov, L. Wolski, and A. Krahel, “Distribution transformer with multi-zone voltage regulation for smart grid system application,” in 2019 IEEE 6th International Conference on Energy Smart Systems (ESS), 2019, pp. 132–137, doi: 10.1109/ESS.2019.8764193.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0400566e-77c3-4f08-a8b5-b3036b7580a9