PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of glass forming ability using percolation concept and tunability of physical parameters of a-Ge12Se76 – xAs12Bix glassy semiconductors

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Glass forming ability of lone-pair semiconductors was analyzed for (x = 0, 2, 4, 6, 8, 10) system. Values of lone pair electrons L were calculated using average coordination number of valence electrons. These values were found to decrease, as the system was moving towards the rigid region. L > 3 values showed vitreous state. Deviation of the stoichiometry confirmed the chalcogen-rich region. A linear correlation was found between the mean bond energy and glass transition temperature. Chemical Bond Approach model was applied to calculate the cohesive energy of the system. A linear relationship was found to exist between the cohesive energy and the theoretical band gap, calculated using Shimakawa relation. A decrease in both parameters was explained on the basis of average stabilization energy and electronegativity of the system. The density values were found to increase and may account for higher refractive index of the system. Large Bohr radius of the Bi atom accounted for an increase in the polarizability. Other parameters viz. degree of covalency, packing density, compactness, molar volume, free volume percentage, excess volume and polaron radius were also calculated. An effort was made to correlate the effect of Bi addition to Ge12Se76 – xAs12Bix lone-pair semiconductor on the basis of the structure of the glassy matrix or the connectedness of the material.
Wydawca
Rocznik
Strony
242--254
Opis fizyczny
Bibliogr. 58 poz., rys., tab.
Twórcy
autor
  • Department of Physics, Amity University Dubai, Dubai International Academic City, United Arab Emirates
autor
  • Department of Physics, Amity University Dubai, Dubai International Academic City, United Arab Emirates
Bibliografia
  • [1] KAMIYA T., TSUCHIYA M., Jpn. J. Appl. Phys., 44 (2005), 5875.
  • [2] EGGLETON B.J., LUTHER-DAVIS B., RICHARDSON K., Nat. Photonics, 5 (2011), 141.
  • [3] SÁMSON Z.L., YEN S.C., MAC-DONALD K.F., KNIGHT K., Phys. Status Solidi-R, 4 (2010), 274.
  • [4] AKSHATHA W.A.G.H., RAVIPRAKASH Y., AJITHKUMAR M.P., UPADHYAYA V., KAMATH S.D., T. Nonferr. Metal. Soc., 25 (2015), 1185.
  • [5] TANAKA K., SHIMAKAWA K., Amorphous chalcogenide semiconductors and related materials, Springer Science & Business Media, 2011.
  • [6] WANG F., ZHANG Z., LIU R., WANG X., ZHU X., PAN A., ZOU B., Nanotechnology, 18 (2007), 305705.
  • [7] SARRACH J., NEUFVILLE DE J.P., HAWORTH W.L., J. Non-Cryst. Solids, 22 (1976), 245.
  • [8] SHARMA I., TRIPATHI S.K., BARMAN P.B., J. Phys. D Appl. Phys., 40 (2007), 4460.
  • [9] SHARMA I., TRIPATHI S.K., MONGA A., BARMAN P.B., J. Non-Cryst. Solids, 354 (2008), 3215.
  • [10] CALVEZ L., YANG Z., LUCAS P., Phys. Rev. Lett., 101 (2008), 177402.
  • [11] GOPINATH J.T., SOLJACIC M., IPPEN E.P., FUFLYIGIN V.N, KING W.A., SHURGALIN M., J. Appl. Phys., 96 (2004), 6931.
  • [12] NICHOLSON J.W., YAN M.F., WISK P., FLEMING J., DIMARCELLO F., MONBERG E., YABLON A., JØRGENSEN C., VENG T., Opt. Lett., 28 (2003), 643.
  • [13] QUOCHI F., DINU M., PFEIFFER L.N., WEST K.W., KERBAGE C.E., WINDERLER R.S., EGGELETON B.J., Phys. Rev. B, 67 (2003), 235323.
  • [14] ZHA C., LUTHER-DAVIES B., WANG R., SMITH A., PRASAD A., JARVIS R.A., MADDEN S., RODE A., ACOFT/AOS – Proceedings, Melbourne, Australia, 2006.
  • [15] MEHRA R.M., KOHLI S., PUNDIR A., SACHDEV V.K., MATHUR P.C., J. Appl. Phys., 81 (1997), 7842.
  • [16] XIA F., BACCARO S., WANG W., PILLONI L., ZHANG X., ZENG H., CHEN G., J. Non-Cryst. Solids, 354 (2008), 1137.
  • [17] THOMAS S., PHILIP J., Solid State Commun., 107 (1998), 423.
  • [18] TOHGE N., MINAMI T., YAMAMOTO Y., TANAKA M., J. Appl. Phys., 51 (1980), 1048.
  • [19] SAXENA M., GUPTA S., IJECE, 3 (2013), 76.
  • [20] SHARMA I., KUMAR A., TRIPATHI S.K., BARMAN P.B., J. Phys. D Appl. Phys., 41 (2008), 175504.
  • [21] EL-KORASHY A., EL-KABANY N., EL-ZAHED H., Physica B, 365 (2005), 55.
  • [22] IOFFE A.F., REGEL A.R., Prog. Semicond., 4 (1960), 237.
  • [23] FOUAD S.S., J. Phys. D Appl. Phys., 28 (1995), 2318.
  • [24] PAMUKCHIEVA V., SZEKERES A., TODOROVA M., SVAB E., REVAY Z.S., SZENTMIKLOSI L., J. Non- Cryst. Solids, 355 (2009), 2485.
  • [25] PHILLIPS J.C., J. Non-Cryst. Solids, 34 (1979), 153.
  • [26] THORPE M.F., J. Non-Cryst. Solids, 57 (1983), 355.
  • [27] PAULING L., The Nature of the Chemical Bond, Cornell University Press, Ihica, NY, 1960.
  • [28] FOUAD S.S., FAYEK S.A., ALI M.H., Vacuum, 49 (1998), 25.
  • [29] LIANG Z., J. Non-Cryst. Solids, 127 (1991), 298.
  • [30] SINGH A.K., MEHTA N., SINGH K., Philos. Mag. Lett., 90 (2010), 201.
  • [31] THORPE M.F., TICHÝ L., Properties and applications of amorphous materials, Springer Science & Business Media, 2012.
  • [32] TICHÝ L., TICHÁ H., J. Non-Cryst. Solids, 189 (1995), 141.
  • [33] FOUAD S.S., EL-BANA M.S., SHARMA P., SHARMA V., Appl. Phys. A, 120 (2015), 137.
  • [34] EL GHANI H.A., EL RAHIM M.A., WAKKAD M.M., SEHLI A.A., ASSRAAN N., Physica B, 381 (2006), 156.
  • [35] HASSANIEN A.S., AKL A.A., J. Alloy. Compd., 648 (2015), 280.
  • [36] FARAG A.A.M., RAFEA M.A., ROUSHDY N., ELSHAZLY O., EL-WAHIDY E.F., J. Alloy. Compd., 621 (2015), 434.
  • [37] BICERANO J., OVSHINSKY S. R., J. Non-Cryst. Solids, 74 (1985), 75.
  • [38] SHAABAN E.R., KANSAL I., MOHAMED S.H., FERRIERA J.M.F., Physica B, 404 (2009), 3571.
  • [39] SHAABAN E.R., ELSHAIKH H.A., SORAYA M.M., Optoelectron. Adv. Mat., 9 (2015), 587.
  • [40] SANDERSON R.T., Inorganic Chemistry, Affiliated East-West Press, New Delhi, 1971.
  • [41] MOTT N.F., DAVIS E.A., Electronics Process in Non-Crystalline Materials, Oxford University Press, Clarendon, 1971.
  • [42] KHAN M.A.M., ZULFEQUAR M., HUSAIN M., Opt. Mater., 22 (2003), 21.
  • [43] DAHSHAN A., ALY K.A., Philos. Mag., 88 (2008), 361.
  • [44] KASTNER M., Phys. Rev. B, 7 (1973), 5237.
  • [45] BENOIT C., AIGRAIN P., BALKANSHI M., Selected Constants Relative to Semiconductors, Pergamon Press, New York, 1961.
  • [46] HASANIEN A.S., AKL A.A, Superlattice. Microst., 89 (2016), 153.
  • [47] SHARMA A., MEHTA N., Mater. Chem. Phys., 161 (2015), 35.
  • [48] FAYEK S.A., BALBOUL M.R., MARZOUK K.H., Thin Solid Films, 515 (2007), 7281.
  • [49] ELLIOTT S.R., The Physics and Chemistry of Solids, Wiley, Chichester, 2000.
  • [50] AKL A.A., HASSANIEN A.S., Superlattice. Microst., 85 (2015), 67.
  • [51] HASSANIEN A.S., AKL A.A., J. Non-Cryst. Solids, 428 (2015), 112.
  • [52] FAROUK M., SAMIR A., METAWE F., ELOKR M., J. Non-Cryst. Solids, 371 (2013), 14.
  • [53] SHARMA, I., J. Optoelectron. Adv. M., 14 (2012), 483.
  • [54] VLČEK M., FRUMAR M., J. Non-Cryst. Solids, 97 (1987), 1223.
  • [55] SHARDA S., SHARMA N., SHARMA P., SHARMA V., J. Non-Cryst. Solids, 362 (2013), 136.
  • [56] NANDA K., KUNDU R.S., SHARMA S., MOHAN D., PUNIA R., KISHORE N., Solid State Sci., 45 (2015), 15.
  • [57] BOOTJOMCHAI C., Radiat. Phys. Chem., 110 (2015), 96.
  • [58] NASTER H.H., KINGERY W.D., Proceedings of the Seventh International Conference on Glass, Brussels, Gordon and Breach, New York, 1965.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-04002f53-803f-44a9-8824-56ffa8a3543a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.