Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Lower limb muscle fatigue has been evaluated in previous studies to understand painrelated movement variability by analyzing different muscles using surface electromyography (sEMG) and angular position signals; however, further studies are needed to particularly understand strength loss due to gait and to inform the development of intelligent control systems for rehabilitation devices in the prevention and management of musculoskeletal or balance control disorders in the Latin American population. A pilot study was developed to characterize muscle fatigue using a walking fatigue detection (WFD) protocol, an instrumented orthosis and a treadmill. Electrical activity was acquired from Rectus Femoris (RF), Biceps Femoris (BF), Tibialis Anterior (TA) and Gastrocnemius Lateralis (GL) muscles, as well as the angular position of the hip and knee of sixteen healthy Latin-American women, aged 22–34 years, 63.5 ± 6 kg mass, and 161 ± 7 cm height. Data were analyzed with a one-way ANOVA analysis of variance and Tukey’s test. Preliminary results show that muscle fatigue is clearly identifiable and is represented by a decrease in both amplitude and frequency of the sEMG signal and lower limb angular position. Muscle fatigue was evident in 93.75% of the participants at the end of the test. 75% of the participants experienced muscle fatigue halfway through the test, of which 31.35% were unable to regain strength causing more muscles to fatigue, due to the extra effort they were enduring it was also found that when one muscle goes into fatigue, another muscle supports the action observing muscle compensation but without a uniform pattern.
Wydawca
Czasopismo
Rocznik
Tom
Strony
933--943
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada – Instituto Politécnico Nacional, Av. Cerro Blanco #141, Col. Colinas del Cimatario, Querétaro, Mexico; Fundación Universitaria de San Gil, San Gil, Colombia
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada – Instituto Politécnico Nacional, Querétaro, Mexico
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada – Instituto Politécnico Nacional, Querétaro, Mexico
autor
- Departamento de Electrónica, BASPI-FootLaB, Pontificia Universidad Javeriana, Bogotá, Colombia
- Department of Nursing, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro, Mexico
- Fundación Universitaria de San Gil, San Gil, Colombia
Bibliografia
- [1] Barbieri FA, Beretta SS, Pereira VAI, Simieli L, Orcioli-Silva D, dos Santos PCR, et al. Recovery of gait after quadriceps muscle fatigue. Gait Posture 2016;43:270–4. https://doi.org/ 10.1016/j.gaitpost.2015.10.015.
- [2] Rahnama N, Lees A, Reilly T. Electromyography of selected lower-limb muscles fatigued by exercise at the intensity of soccer match-play. J Electromyogr Kinesiol 2006;16(3):257–63. https://doi.org/10.1016/j.jelekin.2005.07.011.
- [3] Rainoldi A, Melchiorri G, Caruso I. A method for positioning electrodes during surface EMG recordings in lower limb muscles. J Neurosci Methods 2004;134(1):37–43. https://doi. org/10.1016/j.jneumeth.2003.10.014.
- [4] Bauer CM, Rast FM, Ernst MJ, Meichtry A, Kool J, Rissanen SM, et al. The effect of muscle fatigue and low back pain on lumbar movement variability and complexity. J Electromyogr Kinesiol 2017;33:94–102. https://doi.org/10.1016/ j.jelekin.2017.02.003.
- [5] Barbieri FA, dos Santos PCR, Vitório R, van Dieën JH, Gobbi LTB. Effect of muscle fatigue and physical activity level in motor control of the gait of young adults. Gait Posture 2013;38 (4):702–7. https://doi.org/10.1016/j.gaitpost.2013.03.006.
- [6] Santos PCR, Gobbi LTB, Orcioli-Silva D, Simieli L, van Dieën JH, Barbieri FA. Effects of leg muscle fatigue on gait in patients with Parkinson’s disease and controls with high and low levels of daily physical activity. Gait Posture 2016;47:86–91. https://doi.org/10.1016/j.gaitpost.2016.04.002.
- [7] Lessi GC, Serrão FV. Effects of fatigue on lower limb, pelvis and trunk kinematics and lower limb muscle activity during single-leg landing after anterior cruciate ligament reconstruction. Knee Surgery Sport Traumatol Arthrosc 2017;25(8):2550–8. https://doi.org/10.1007/s00167-015-3762-x.
- [8] Helbostad JL, Leirfall S, Moe-Nilssen R, Sletvold O. Physical fatigue affects gait characteristics in older persons. J Gerontol Ser A Biol Sci Med Sci Sep. 2007;62(9):1010–5. https://doi.org/10.1093/gerona/62.9.1010.
- [9] Nor MNM, Zakaria NK, Jailani R, Tahir NM. Analysis of EMG signals during walking of healthy children no. Iris. Procedia Comput Sci 2015;76:316–22. https://doi.org/10.1016/j. Procs.2015.12.299.
- [10] Di Nardo F, Strazza A, Mengarelli A, Ercolani S, Morgoni N, Burattini L, et al. Surface EMG patterns for quantification of thigh muscle co-contraction in school-age children: normative data during walking. Gait Posture 2018;61:25–33. https://doi.org/10.1016/j.gaitpost.2017.12.025.
- [11] Kannape OA, Herr HM. Split-belt adaptation and gait symmetry in transtibial amputees walking with a hybrid EMG controlled ankle-foot prosthesis. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS 2016;2016-Octob:5469–72. https://doi.org/10.1109/EMBC.2016.7591964.
- [12] Davis K, Williams JL, Sanford BA, Zucker-Levin A. Assessing lower extremity coordination and coordination variability in individuals with anterior cruciate ligament reconstruction during walking. Gait Posture 2019;67(February):154–9. https:// doi.org/10.1016/j.gaitpost.2018.10.010.
- [13] Chaparro-Cárdenas SL, Lozano-Guzmán AA, Ramirez-Bautista JA, Hernández-Zavala A. A review in gait rehabilitation devices and applied control techniques. Disabil. Rehabil. Assist. Technol. 2018;13(8):819–34. https:// doi.org/10.1080/17483107.2018.1447611.
- [14] Whittle MW. Clinical gait analysis: a review. Hum Mov Sci 1996;15:369–87.
- [15] van der Krogt MM, Delp SL, Schwartz MH. How robust is human gait to muscle weakness? Gait Posture 2012;36 (1):113–9. https://doi.org/10.1016/j.gaitpost.2012.01.017.
- [16] Bayón C, Ramírez O, Serrano JI, Castillo MDD, Pérez-Somarriba A, Belda-Lois JM, et al. Development and evaluation of a novel robotic platform for gait rehabilitation in patients with Cerebral Palsy: CPWalker. Rob Auton Syst 2017;91:101–14. https://doi.org/10.1016/j.robot.2016.12.015.
- [17] Roldán-Jiménez C, Bennett P, Cuesta-Vargas AI, Macaluso A. Muscular activity and fatigue in lower-limb and trunk muscles during different sit-to-stand tests. PLoS ONE Oct. 2015;10(10):e0141675. https://doi.org/10.1371/journal.pone.0141675.g00210.1371/journal.pone.0141675. g00310.1371/journal.pone.0141675.t00110.1371/journal. pone.0141675.t00210.1371/journal.pone.0141675.t00310.1371/ journal.pone.0141675.t00410.1371/journal.pone.0141675. t00510.1371/journal.pone.0141675.s001.
- [18] Helsinki, Declaration of Helsinki World Medical Association Declaration of Helsinki, World Heal Organ, vol. 79, no. October 1975, pp. 373–374, 2001.
- [19] MyoWare, MyoWare Muscle Sensor (AT-04-001). p. 8, 2015.
- [20] H.J. Hermens et al., European Recommendations for Surface ElectroMyoGraphy, vol. 8. Roessingh Research and Development b.v.
- [21] P. Konrad, The ABC of EMG A Practical Introduction to Kinesiological Electromyography. Scottsdale, Arizona, 2006.
- [22] Zajac FE, Neptune RR, Kautz SA. Biomechanics and muscle coordination of human walking: Part I: Introduction to concepts, power transfer, dynamics and simulations. Gait Posture 2002;16(3):215–32. https://doi.org/10.1016/S0966-6362 (02)00068-1.
- [23] Gage JR, Perry J, Hicks RR, Koop S, Werntz JR. Rectus femoris transfer to improve knee function of children with cerebral palsy. Dev Med Child Neurol Nov. 2008;29(2):159–66. https:// doi.org/10.1111/j.1469-8749.1987.tb02131.x.
- [24] Potier TG, Alexander CM, Seynnes OR. Effects of eccentric strength training on biceps femoris muscle architecture and knee joint range of movement. Eur J Appl Physiol Apr. 2009;105(6):939–44. https://doi.org/10.1007/s00421-008-0980-7.
- [25] McNeil Chris J, Doherty Timothy J, Stashuk Daniel W, Rice Charles L. Motor unit number estimates in the tibialis anterior muscle of young, old, and very old men. Muscle Nerve 2005;31(4):461–7. https://doi.org/10.1002/(ISSN)1097-459810.1002/mus.v31:410.1002/mus.20276.
- [26] Abe T, Kumagai K, Brechue WF. Fascicle length of leg muscles is greater in sprinters than distance runners. Med Sci Sports Exerc 2000;32(6):1125–9. https://doi.org/10.1097/00005768- 200006000-00014.
- [27] Brockett Claire L, Chapman Graham J. Biomechanics of the ankle. Orthop Trauma 2016;30(3):232–8. https://doi.org/ 10.1016/j.mporth.2016.04.015.
- [28] Nigg BM, Fisher V, Ronsky JL. Gait characteristics as a function of age and gender. Gait Posture Dec. 1994;2 (4):213–20. https://doi.org/10.1016/0966-6362(94)90106-6.
- [29] Madansingh SI, Murphree DH, Kaufman KR, Fortune E. Assessment of gait kinetics in post-menopausal women using tri-axial ankle accelerometers during barefoot walking. Gait Posture Mar. 2019;69:85–90. https://doi.org/10.1016/ j.gaitpost.2019.01.021.
- [30] A.H.A. Majid, M.A.A. Rahman, S.A. Mazlan, H. Zamzuri, Biosignals based intelligent control interface for current-induced physiological devices. 2015 10th Asian Control Conf. Emerg. Control Tech. a Sustain. World, ASCC 2015, 2015, doi: 10.1109/ASCC.2015.7244514.
- [31] N. Kunju, N. Kumar, D. Pankaj, A. Dhawan, and A. Kumar, ‘‘EMG Signal Analysis for Identifying Walking Patterns of Normal Healthy Individuals,” Indian J. Biomech. Spec. Issue, no. NCBM 7-8, pp. 118–122, 2009, Accessed: Nov. 23, 2018. [Online]. Available: https://www.iitr.ac.in/ISB/uploads/File/ ISB/pdf/neeleshnissan.pdf.
- [32] Cronin Neil J, Peltonen Jussi, Sinkjaer Thomas, Avela Janne. Neural compensation within the human triceps surae during prolonged walking. J. Neorophysiology 2011;105(2):548–53. https://doi.org/10.1152/jn.00967.2010.
- [33] Stutzig N, Siebert T. Human Movement Science Muscle force compensation among synergistic muscles after fatigue of a single muscle. Hum Mov Sci 2015;42:273–87. https://doi.org/ 10.1016/j.humov.2015.06.001.
- [34] Toro S, Santos-Cuadros S, Olmeda S, Álvarez-Caldas E, Dıáz C, Román VS. Is the use of a low-cost sEMG sensor valid to measure muscle fatigue? Sensors 2019;19(14):3204. https://doi.org/10.3390/s19143204.
- [35] Bogey RA, Perry J, Gitter AJ. An EMG-to-force processing approach for determining ankle muscle forces during normal human gait. IEEE Trans Neural Syst Rehabil Eng 2005;13 (3):302–10. https://doi.org/10.1109/TNSRE.733310.1109/TNSRE.2005.851768.
- [36] Dzahir M, Yamamoto S. Recent trends in lower-limb robotic rehabilitation orthosis: control scheme and strategy for pneumatic muscle actuated gait trainers. Robotics 2014;3 (2):120–48. https://doi.org/10.3390/robotics3020120.
- [37] Staudenmann D, Roeleveld K, Stegeman DF, Van Dieën JH. Methodological aspects of SEMG recordings for force estimation – a tutorial and review. J Electromyogr Kinesiol 2010;20(3):375–87. https://doi.org/10.1016/ j.jelekin.2009.08.005.
- [38] Di Nardo F, Mengarelli A, Maranesi E, Burattini L, Fioretti S. Assessment of the ankle muscle co-contraction during normal gait: a surface electromyography study. J Electromyogr Kinesiol 2015;25(2):347–54. https://doi.org/ 10.1016/j.jelekin.2014.10.016.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03fe070e-4dc2-4b8c-944c-ffd13715bfe0