PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrooxidation of methyl alcohol with Ni-Co catalyst

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to development of the renewable energy sources, the powering of fuel cells (FCs) with bio-fuels is very important. The one of this fuel is methyl alcohol. The use of fuel cells on a large scale is mainly limited by the high cost of catalysts - mainly platinum. Elimination of Pt as catalyst would allow for wider commercial application of FCs. The paper presents a study of methyl alcohol electrooxidation on electrode with NiCo alloy catalyst. Researches were done by the method of polarizing curves of electrooxidation of methanol in glass vessel. Conducted measurements show that there is a possibility of electrooxidation of methanol with Ni-Co catalyst. In any case, the process of electrooxidation of methanol occurs. A maximum current density was equal 50 mA/cm2 . So, the work shows possibility to use Ni-Co alloys as catalysts for fuel electrode to methyl alcohol electrooxidation.
Rocznik
Tom
Strony
305--315
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • University of Opole, Department of Process Engineering, ul. Dmowskiego 7-9, 45-365 Opole
  • University of Opole, Department of Process Engineering, ul. Dmowskiego 7-9, 45-365 Opole
Bibliografia
  • Appleby, A.J., Foulkes, F.R. (1988). Fuel cell handbook. New York: Van Nostrand Reinhold Co. Inc.
  • Armour, M. A. (2003). Hazarodous laboratory chemicals disposal guide. Boca Raton: CRC Press.
  • Asazawa, K., Yamada, K., Tanaka, H., Oka, A., Taniguchi, M., Kobayashi, T. (2007). A platinum-free zero-carbon-emission easy fuelling direct hydrazine fuel cell for vehicles. Angewandte Chemie, 119 (42): 8170-8173.
  • Barbira, F., Moltera, T., Daltonb L. (2005). Efficiency and weight trade-off analysis of regenerative fuel cells as energy storage for aerospace applications. International Journal of Hydrogen Energy, 30 (4): 351-357. DOI:10.1016/j.ijhydene.2004.08.004.
  • Bockris, J.O.M., Reddy, A.K.N. (2000). Modern electrochemistry. New York: Kulwer Academic/Plenum Publishers.
  • Chung, D.G., Lee, K.J, Sung, Y.E, (2016). Methanol electro-oxidation on the Pt surface: revisiting the cyclic voltammetry interpretation, J. Phys. Chem. C, 120 (17): 9028-9035. DOI: 10.1021/acs.jpcc.5b12303
  • Dong, Y., Steinberg, M. (1997). Hynol - An economical process for methanol production from biomass and natural gas with reduced CO2 emission. International Journal of Hydrogen Energy, 22 (10-11): 971-977. DOI:10.1016/S0360-3199(96)00198-X.
  • Freeh, J.E., Pratt, J.W., Brouwer, J. (2004). Development of a Solid-Oxide Fuel Cell/Gas Turbine Hybrid System Model for Aerospace Applications. ASME Turbo Expo 2004: Power for Land, Sea, and Air, 7 (GT2004-53616): 371-379. DOI:10.1115/GT2004-53616.
  • Furukawa, H., Yaghi, O.Y. (2009). Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications. J. Am. Chem. Soc., 131 (25): 8875-8883. DOI: 10.1021/ja9015765.
  • Gaines, L.L., Elgowainy, A., Wang, M.Q. (2008). Full Fuel-Cycle Comparison of Forklift Propulsion Systems. Energy Systems Division, Argonne National Laboratory, Chicago, ANL/ESD/08-3.
  • Granovskii, M., Dincer, I., Rosen, M.A. (2006). Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles. Journal of Power Sources, 159: 1186-1193. DOI: 10.1016/j.jpowsour.2005.11.086.
  • Hamnett, A. (1997). Mechanism and electrocatalysis in the direct methanol fuel cell. Catalysis Today, 38 (4): 445-457.
  • Hiranoa, A., Hon-Namia, K., Kunitoa, S., Hadab, M., Ogushib, Y. (1998). Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catalysis Today, 45 (1-4): 399-404. DOI:10.1016/S0920-5861(98)00275-2.
  • Hoogers, G. (2003). Fuel cell technology handbook. Boca Raton: CRC Press.
  • Kakaç S., Pramuanjaroenkij A., Vasilev L., (2007). Mini-Micro Fuel Cells: Fundamentals and Applications, Springer.
  • Kelley, S.C., Deluga, G.A., Smyrl, W.H. (2000). A Miniature Methanol/Air Polymer Electrolyte Fuel Cell. Electrochem, Solid-State Lett, 3 (9): 407-409. DOI:10.1149/1.1391161.
  • Larminie, J., Dicks, A. (2005). Fuel cell system explained. John Wiley & Sons Ltd.
  • Li, L., Xing, Y. (2009). Methanol electro-oxidation on Pt-Ru alloy nanoparticles supported on carbon nanotubes, Energies, 2: 789-804. DOI:10.3390/en20300789
  • Niaz, S., Manzoor, T., Pandith, A.H. (2015). Hydrogen storage: Materials, methods and perspectives, Renewable and Sustainable Energy Reviews. 50: 457-469. DOI: https://doi. org/10.1016/j.rser.2015.05.011.
  • O’Hayre, R., Cha, S.W., Colella, W., Prinz, F.B. (2005). Fuel cell fundamentals. Hoboken: John Wiley & Sons.
  • Offer, G.J., Howey, D., Contestabilec, M., Clagued, R., Brandona, N.P. (2010). Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system. Energy Policy, 38 (1): 24-29. DOI: https://doi.org/10.1016/j.enpol.2009.08.040.
  • Papadias, D.D, Ahmed, S., Kumar, R. (2012). Fuel quality issues with biogas energy - An economic analysis for a stationary fuel cell system. Energy, 44 (1): 257-277. DOI: https://doi.org/10.1016/j.energy.2012.06.031.
  • Rolison, D.R., Hagans, P.L., Swider, K.E., Long, J.W. (1999). Role of hydrous ruthenium oxide in Pt-Ru direct methanol fuel cell anode catalysis: The importance of mixed electron/proton conductivity. Langmuir, 15(3): 774-779.
  • Sakintuna, B., Lamari-Darkrimb, F., Hirscherc, M. (2007). Metal hydride materials for solid hydrogen storage: A review. International Journal of Hydrogen Energy, 32: 1121-1140. DOI: 10.1016/j.ijhydene.2006.11.022.
  • Steigerwalt, E.S., Deluga, G.A., Cliffel, D.E., Lukehart, C.M. (2001). A Pt-Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a directmethanol fuel cell anode catalyst. Journal of Physical Chemistry B, 105 (34): 8097-8101. DOI: 10.1021/jp011633i
  • Stolten, D. (2010). Hydrogen and fuel cells. Fundamentals, technologies and applications. Weinheim: Wiley-VCH.
  • Tripković, A.V., Popović, K.D, Grgur, B.N, Blizanac, B., Ross, P.N., Marković, N.M. (2002). Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions, Electrochimica Acta, 47, (22–23): 3707-3714. DOI: 10.1016/S0013-4686(02)00340-7.
  • Von Helmolt, R., Eberle, U. (2007). Fuel cell vehicles: Status 2007, Journal of Power Sources, 165 (2): 833-843. DOI: https://doi.org/10.1016/j.jpowsour.2006.12.073.
  • Wyman, C.E., Bain, R.L., Hinman, N.D., Stevens, D.J. (1993). Ethanol and methanol from cellulosic biomass. Washington: Island Press.
  • Włodarczyk, P.P., Włodarczyk, B. (2016a). Electrooxidation of diesel fuel in alkaline electrolyte. Infrastructure and Ecology of Rural Areas, 4 (1): 1071-1080. DOI: http:// dx.medra.org/10.14597/infraeco.2016.4.1.078.
  • Włodarczyk, P.P., Włodarczyk, B. (2016b). Canola oil electrooxidation in an aqueous solution of KOH - Possibility of alkaline fuel cell powering with canola oil. Journal of Power Technologies, 96 (6).
  • Włodarczyk, B., Włodarczyk, P.P. (2016c). Methanol electrooxidation with Cu-B catalyst. Infrastructure and Ecology of Rural Areas, 4 (2): 1483-1492. DOI: http://dx.medra.org/10.14597/infraeco.2016.4.2.110.
  • Włodarczyk, P.P., Włodarczyk, B. (2016d). Stop Ni-Co jako katalizator anody ogniwa paliwowego zasilanego alkoholem metylowym, Diagnozowanie Stanu Środowiska, Metody Badawcze - Prognozy, 10: 217-227.
  • Włodarczyk, P.P., Włodarczyk, B., Kalinichenko, A. (2017a). Possibility of direct electricity production from waste canola oil. E3S Web of Conferences, 19, 01019. DOI: 10.1051/e3sconf/20171901019.
  • Włodarczyk, P.P., Włodarczyk, B. (2017b). Electrooxidation of coconut oil in alkaline electrolyte. Journal of Ecological Engineering, 18 (5): 173-179. DOI: 10.12911/22998993/74623.
  • Włodarczyk, P.P., Włodarczyk, B. (2017c). Elektroutlenianie odpadowego syntetycznego oleju silnikowego w wodnym roztworze H2SO4 . Inżynieria Ekologiczna, 18 (1): 65-70. DOI: 10.12912/23920629/66985.
  • Włodarczyk, P.P., Włodarczyk, B. (2017d). Electricity production from waste engine oil from agricultural machinery. Infrastructure and Ecology of Ruras Areas, 4 (2): 1609-1618. DOI: http://dx.medra.org/10.14597/infraeco.2017.4.2.121.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03f89750-52be-479f-8b7f-296e2aab1b13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.