Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The purpose of the work is to demonstrate the possibility of using a femtosecond laser for forming surface layers with an adjustable microstructure on the surface of TRIP steel 03X13AG19, and processing the obtained images using digital complexes. Design/methodology/approach: A laser treatment of TRIP steel (03X13AG19) with pulses of femtosecond duration was carried out in a melting mode. The source of the radiation is a femtosecond titanium-sapphire Ti:Al2O3 complex consisting of a predefining femtosecond generator “Mira Optima 900-F” and regenerative amplifier Legend F-1K-HE. Peculiarities of the surface structure of irradiated samples were studied using a Solver P47-PRO atomic force microscope. The structural-geometric parameters of the surface of the investigated steel treated with the femtosecond laser were determined using the software package Nova 1.0.26.1443 and the functions of the Image Analysis. Microstructural analysis was performed using a raster electron microscope JSM 6700F and a METAM-1P microscope. In this work, the digitization of images of microstructures obtained as a result of surface irradiation by highly concentrated energy streams of femtosecond duration has been carried out. The analysis of the surface structure of laser-structured materials was carried out using a metallographic complex with the software ImProcQCV. Findings: It has been revealed that the predetermined change of the laser treatment mode changes the microrelief and the shape and size of the fragments of the surface structure of the investigated steel. The use of digital image processing allowed to generalize the morphological features of the surface structure, to assess in detail the character of the microrelief, and to monitor under in-situ mode the structure and properties of the surface of the material being studied. Research limitations/implications: The obtained research results can be applied to stainless steels of various structural classes. Practical implications: Surface digitization significantly reduces the time for research, improves the quality and accuracy of the data obtained, makes it possible to conduct in-situ researches with the further implementation of the results using the Internet of Things technologies. Originality/value: A comprehensive approach is proposed for the estimation of parameters of laser-induced periodic surface structures (LIPSS) using a metallographic complex with the software ImProcQCV.
Wydawca
Rocznik
Tom
Strony
5--19
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
autor
- Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
- The John Paul II Catholic University of Lublin, Al. Racławickie 14, 20-950 Lublin, Poland
autor
- Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
autor
- Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
autor
- Karpenko Physico-Mechanical Institute of the National Academy of Sciences of Ukraine, 5 Naukova St., Lviv 79060, Ukraine
autor
- Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
autor
- Symphony Solutions NV, 2b Naukova St., Lviv 79060, Ukraine
Bibliografia
- [1] O. Hesse, J. Merker, M. Brykov, V. Efremenko, On the strength of low-alloy steels with increased carbon content against abrasive wear, Tribologie and Schmierungstechnik, 60/6 (2013) 37-43 (in German).
- [2] Z. Duriagina (Ed.), Stainless steels and alloys, IntechOpen, 2019, 148, DOI: https://doi.org/ 10.5772/intechopen.76956.
- [3] P. Podany, C. Reardon, M. Koukolikova, R. Prochazka, A. Franc, Microstructure, Mechanical Properties and Welding of Low Carbon, Medium Manganese TWIP/TRIP Steel, Metals 8 (2018) 263-1-263-18, doi:10.3390/met8040263.
- [4] M.I. Pashechko, V.V. Shyrokov, Z.A. Duryahina, Kh.B. Vasyliv, Structure and corrosion-mechanical properties of the surface layers of steels after laser alloying, Materials Science 39/1 (2003) 108-117, DOI: https://doi.org/10.1023/A:1026134714719.
- [5] Z. Duriagina, M. Pashechko, V. Fedirkko, 0. Eliseeva, In situ - surface engineering of structural materials in liquid metal environments, Surface Engineering 1 (2003) 54-59.
- [6] F. Ebrahimi (Ed.), Advances in Functionally Graded Materials and Structures, IntechOpen, 2016, DOI: 10.5772/60744.
- [7] Z.A. Duryahina, A.K. Borysyuk, S.A. Bespalov, V.Y. Pidkova, Influence of the thermal cyclic treatment on the phase composition of ion-nitrided surface layers of 12Kh18N10T steel, Materials Science 48/3 (2012) 364-368, DOI: 10.1007/s11003-012-9514-x.
- [8] N. Pavlenko, N. Shcherbovskikh, Z. Duriagina, Interstitial Fe-Cr alloys: Tuning of magnetism by nanoscale structural control and by implantation of nonmagnetic atoms, EPJ Applied Physics 58/1 (2012) 10601-1-10601-8, DOI: https://doi.org/10.1051/epjap/ 2012110002.
- [9] Z.A. Duryahina, 1.M. Makhorkin, H.V. Laz'ko, V.I. Bychyns'kyi, Evaluation of temperature fields in corrosion-resistant steels under the action of laser radiation, Materials Science 43/6 (2007) 800-806, DOI: https://doi.org/10.1007/s11003-008-9025-y.
- [10] M.F. Montemor, Functional and smart coatings for corrosion protection: a review of recent advances, Surface and Coatings Technology 258 (2014) 17-37, DOI: https://doi.org/10.1016/j.surfcoat.2014.06.031.
- [11] M. Kindrachuk, A. Shevchenko, A. Kryzhanovskyi, Improvement of the quality of TiC-Co system plasma coating by laser treatment, Aviation 20/4 (2016) 155-159, DOI: https://doi.org/10.3846/16487788.2016.1227551.
- [12] C. Sciancalepore, L. Gemini, L. Romoli, F. Bondioli, Study of the wettability behavior of stainless steel surfaces after ultrafast laser texturing, Surface and Coatings Technology 352 (2018) 370-377, DOI: https://doi.org/10.1016/j.surfcoat.2018.08.030.
- [13] Z. Guosheng, P. Fauchet, A. Siegman, Growth of spontaneous periodic surface structures on solids during laser illumination, Physical Review B 26/10 (1982) 5366-5381, DOI: https://doi.org/10.1103/PhysRevB.26.5366.
- [14] J. Sipe, J. Young, J. Preston, H. van Driel, Laser-induced periodic surface structure. I. Theory, Physical Review B 27 (1983) 1141-1154, DOI: https://doi.org/10.1103/PhysRevB.27.1141.
- [15] I. Gnilitskyi, T.J.Y. Derrien, Y. Levy, N.M. Bulgakova, T. Mocek, L. Orazi, High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures, Scientific Reports 7/1 (2017) 8485, DOI: https://doi.org/10.1038/s41598-017-08788-z.
- [16] J. Schille, R. Ebert, U. Loeschner, P. Scully, N. Goddard, H. Exner, High repetition rate femtosecond laser processing of metals, Proceedings of the 11th International Symposium on Laser Precision Microfabrication "LPM2010", Stuttgart, Germany, 2010.
- [17] J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, Femtosecond laser-induced periodic surface structures, Journal of Laser Applications 24/4 (2012) 042006, DOI: https://doi.org/10.2351/1.4712658.
- [18] Yu R. Kolobov, Grain boundary diffusion and properties of nanostructured materials, Cambridge International Science Publishing, 2007, 250.
- [19] D. Bäuerle, Thermal, photophysical, and photochemical processes, in: Laser Processing and Chemistry, Springer, Berlin, Heidelberg, 2011, 13-38, DOI: https://doi.org/10.1007/978-3-662-03253-4_2.
- [20] M.A. Gubko, W. Husinsky, A.A. Ionin, S.I. Kudryashov, S.V. Makarov, C.R. Nathala, I.V. Treshin, Enhancement of ultrafast electron photoemission from metallic nanoantennas excited by a femtosecond laser pulse, Laser Physics Letters 11/6 (2014) 065301, DOI: 10.1088/1612-2011/11/6/065301.
- [21] I.N. Saraeva, S.I. Kudryashov, V.N. Lednev, S.V. Makarov, S.M. Pershin, A.A. Rudenko, D.A. Zayarny, A.A. Ionin, Single- and multishot femtosecond laser ablation of silicon and silver in air and liquid environments: plume dynamics and surface modifi-cation, Applied Surface Science 476 (2019) 576-586, DOI: https://doi.org/10.1016/j.apsusc.2019.01.092.
- [22] E. Leveugle, D.S. Ivanov, L.V. Zhigilei. Photome-chanical spallation of molecular and metal targets: molecular dynamics study, Applied Physics A 79/7 (2004) 1643-1655, DOI: https://doi.org/10.1007/ s00339-004-2682-2.
- [23] L.V. Zhigilei, Z. Lin, D.S. Ivanov, Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion, The Journal of Physical Chemistry C 113/27 (2009) 11892-11906, DOI: https://doi.org/10.1021/jp902294m.
- [24] N.M. Bulgakova, I.M. Bourakov, Phase explosion under ultrashort pulsed laser ablation: modeling with analysis of metastable state of melt, Applied Surface Science 197-198 (2002) 41-44, DOI: https://doi.org/10.1016/S0169-4332(02)00300-8.
- [25] J.F. Young, I.E. Sipe, H.M. van Driel, Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium, Physical Review B 30/4 (1984) 2002, DOI: https://doi.org/10.1103/PhysRevB.30.2001.
- [26] B.E.J. Lee, H. Exir, A. Weck, K. Grandfield, Characterization and evaluation of femtosecond laser-induced sub-micron periodic structures generated on titanium to improve osseointegration of implants, Applied Surface Science 441 (2018) 1034-1042, DOI: https://doi.org/10.1016/j.apsusc.2018.02.119.
- [27] X. Shi, Z. Huang, Miku J.Laakso, F. Niklaus, R. Sliz, T. Fabritius, M. Somani, T. Nyo, X. Wang, M. Zhang, G. Wang, J. Komi, M. Huttula, W. Cao, Quantitative assessment of structural and compositional colors induced by femtosecond laser: A case study on 301LN stainless steel surface, Applied Surface Science 484 (2019) 655-662, DOI: https://doi.org/10.1016/j.apsusc.2019.04.147.
- [28] M.S. Ahsan, F. Ahmed, Y.G. Kim, M.S. Lee, M.B. Jun, Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures, Applied Surface Science 257 (2011) 7771-7777, DOI: https://doi.org/10.1016/j.apsusc.2011.04.027.
- [29] A.Y. Vorobyev, C. Guo, Colorizing metals with femtosecond laser pulses, Applied Physics Letters 92/4 (2008) 041914, DOI: 10.1063/1.2834902.
- [30] Ch.-L. Chang, Ch.-W. Cheng, J.-K. Chen, Femtosecond laser-induced periodic surface structures of copper: Experimental and modeling comparison, Applied Surface Science 469 (2019) 904-910, DOI: https://doi.org/10.1016/j.apsusc.2018.11.059.
- [31] S. Wang, K. Liu, X. Yao, L. Jiang, Bioinspired surfaces with superwettability: New insight on theory, design, and applications, Chemical Reviews 115/16 (2015) 8230-8293, DOI: 10.1021/cr400083y.
- [32] M.N.W. Groenendijk, J. Meijer, Surface micro-structures obtained by femtosecond laser pulses, CIRP Annals 55/1 (2006) 183-186, DOI: https://doi.org/10.1016/S0007-8506(07)60394-1.
- [33] E.J.Y. Ling, J. Said, N. Brodusch, R. Gauvin, P. Servio, A.-M. Kietzig, Investigating and understanding the effects of multiple femtosecond laser scans on the surface topography of stainless steel 304 and titanium, Applied Surface Science 353 (2015) 512-521, DOI: 10.1016/j.apsusc.2015.06.137.
- [34] T. Baldacchini, J.E. Carey, M. Zhou, E. Mazur, Superhydrophobic Surfaces Prepared by Micro-structuring of Silicon Using a Femtosecond Laser, Langmuir 22 (2006) 4917-4919, DOI: https://doi.org/10.1021/1a053374k.
- [35] M. Janecek (Ed.), Modern Electron Microscopy in Physical and Life Sciences, IntechOpen, 2016, DOI: 10.5772/60494.
- [36] Z. Duriagina, 0. Eliseeva, Formation of protective layers on the stainless steel for operation in a liquid lead melt, Surface Engineering 1 (2005) 43-49.
- [37] Z. Duriagina, R. Holyaka, T. Tepla, V. Kulyk, P. Arras, E. Eyngorn, Identification of Fe3O4 Nano-particles Biomedical Purpose by Magnetometric Methods, in: L.A. Dobrzański (Ed.), Biomaterials in Regenerative Medicine, IntechOpen, 2018, 379-407, DOI: 10.5772/intechopen.69717.
- [38] T.L. Tepla, I.V. Izonin, Z.A. Duriagina, R.O. Tkachenko, A.M. Trostianchyn, 1.A. Lemishka, V.V. Kulyk, T.M. Kovbasyuk, Alloys selection based on the supervised learning technique for design of biocompatible medical materials, Archives of Materials Science and Engineering 93/1 (2018) 32-40, DOI: 10.5604/01.3001.0012.6944.
- [39] D. Peleshko, T. Rak, I. Izonin, Image superresolution via divergence matrix and automatic detection of crossover, International Journal of Intelligent Systems and Applications 8/12 (2016) 1-8, DOI: 10.5815/ijisa.2016.12.01.
- [40] R. Tkachenko, P. Tkachenko, I. Izonin, Y. Tsymbal, Learning-based image scaling using neural-like structure of geometric transformation paradigm, in: A.E. Hassanien, D.A. Oliva (Eds.), Advances in Soft Computing and Machine Learning in Image Processing, Part of the Studies in Computational Intelligence Book Series, Vol. 730, Springer Verlag, 2018, 537-565, DOI: https://doi.org/10.1007/978-3-319-63754-9_25.
- [41] I. Mircea, P. Corcoran, Advances in extending the AAM techniques from grayscale to color images, U.S. Patent No. 7,965,875. 21 Jun. 2011.
- [42] J.M. Huntley, An image processing system for the analysis of speckle photographs, Journal of Physics E: Scientific Instruments 19/1 (1986) 43, DOI: https://doi.org/10.1088/0022-3735/19/1/007.
- [43] J.M. Keller, S. Chen, R.M. Crownover, Texture description and segmentation through fractal geometry, Computer Vision, Graphics, and Image Processing 45/2 (1989) 150-166, DOI: https://doi.org/10.1016/0734-189X(89)90130-8.
- [44] S.D. Yanowitz, A.M. Bruckstein, A new method for image segmentation, Computer Vision, Graphics, and Image Processing 46/1 (1989) 82-95, DOI: https://doi.org/10.1016/S0734-189X(89)80017-9.
- [45] J.G. Liu, Smoothing filter-based intensity modulation: A spectral preserve image fusion technique for improving spatial details, International Journal of Remote Sensing 21/18 (2000) 3461-3472, DOI: https://doi.org/10.1080/014311600750037499.
- [46] K.M.T. Ahmmed, E.J.Y. Ling, P. Servio, A.-M. Kietzig. Introducing a new optimization tool for femtosecond laser-induced surface texturing on titanium, stainless steel, aluminum and copper, Optics and Lasers in Engineering 66 (2015) 258-268, DOI: https://doi.org/10.1016/j.optlaseng.2014.09.017.
- [47] S. Moradi, S. Kamal, P. Englezos, S.G. Hatzikiriakos, Femtosecond laser irradiation of metallic surfaces: effects of laser parameters on superhydrophobicity, Nanotechnology 24/41 (2013) 415302, DOI: https://doi.org/10.1088/0957-4484/24/41/415302.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03f6e6b7-1e4b-43af-a72e-cd682f0388f9