PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rheological and tribological behavior of polyacrylamide-base solutions for artificial synovial fluid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents tribological and rheological analysis results of artificial synovial fluid base solutions. Special attention was paid to polyacrylamide preparations with different molecular weights and concentrations. Methods: Tribological tests were conducted using the Al2O3–CoCrMo friction pair in the presence of investigated lubricants. Confocal microscopy was used to analyze and assess of volume, depth, and width of wear traces. Moreover, the viscosity and viscoelasticity tests of analyzed solutions were carried out. The rheological measurements were focused on the oscillatory tests, which allowed us to determine the elasticity modulus (G′) and viscosity (G″). Results: Viscoelastic nature of the tested preparations depends on the strain rate. It has been shown that elastic properties dominate at higher frequencies. The molecular weight of the polymer has a particular influence on these properties. The most promising results were obtained for 6% and 8 % high molecular weight polyacrylamide compositions. Conclusions: However, all tested polyacrylamide solutions show better rheological and tribological characteristics than commercial preparation based on hyaluronic acid.
Słowa kluczowe
Rocznik
Strony
49--59
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
  • Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Białystok, Poland
  • Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Białystok, Poland
  • Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Białystok, Poland.
Bibliografia
  • [1] BANNURU R.R., OSANI M., VAYSBROT E.E., MCALINDON T.E., Comparative safety profile of hyaluronic acid products for knee osteoarthritis: a systematic review and network metaanalysis, Osteoarthr. Cartil., 2016, 24, 12, 2022–2041, DOI: 10.1016/j.joca.2016.07.010.
  • [2] BEN-TRAD L., MATEI C.I., SAVA M.M., FIALI S., DUCLOS M.E., BERTHIER Y., GUICHARDANT M., BERNOUD-HUBAC N., MANITI O., LANDOULSI A., BLANCHIN M.G., MIOSSEC P., GRANJON P., TRUNFIO-SFARGHIU A.M., Synovial Extracellular Vesicles: Structure and Role in Synovial Fluid Tribological Performances, Int. J. Mol. Sci., 2022, 23, 19, 11998, DOI: 10.3390/ ijms231911998.
  • [3] BHUANANTANONDH P., GRECOV D., KWOK E., GUY P., Rheology of Synovial Fluid with and without Viscosupplements in Patients with Osteoarthritis: A Pilot Study, Biomed. Eng. Lett., 2011, 1, 213–219, DOI: 10.1007/s13534-011-0034-7.
  • [4] BLIDDAL H., OVERGAARD A., HARTKOPP A., BEIER J., CONAGHAN P.G., HENRIKSEN M., Polyacrylamide hydrogel injection for knee osteoarthritis: results of a 52 week prospective study, Osteoarthr. Cartil., 2021, 29, 278, DOI: 10.1016/ j.joca.2021.02.366.
  • [5] CAGLIO S., RIGHETTI P.G., On the pH dependence of polymerization efficiency, as investigated by capillary zone electrophoresis, Electrophoresis, 1993, 14, 1, 554–558, DOI: 10.1002/ELPS.1150140184.
  • [6] CHARRIER E.E., POGODA K., LI R., WELLS R.G., JANMEY P.A., Elasticity-dependent response of malignant cells to viscous dissipation, Biomech. Model. Mechanobiol., 2021, 20, 1, 145–154, DOI: 10.1007/s10237-020-01374-9.
  • [7] CHARRIER E.E., POGODA K., WELLS R.G., JANMEY P.A., Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation, Nat. Commun., 2018, 9, 1, 449, DOI: 10.1038/s41467-018- 02906-9.
  • [8] CHRISTENSEN L., CAMITZ L., ILLIGEN K.E., HANSEN M., SARVAA R., CONAGHAN P.G., Synovial incorporation of polyacrylamide hydrogel after injection into normal and osteoarthritic animal joints, Osteoarthr. Cartil., 2016, 24, 11, 1999– 2002, DOI: 10.1016/j.joca.2016.07.007.
  • [9] DĄBROWSKI J.R., KLEKOTKA M., SIDUN J., Fretting and fretting corrosion of 316L implantation steel in the oral cavity environment, Eksploat. i Niezawodn. – Maint. Reliab., 2014, 16, 3, 441–446.
  • [10] DIVINE J.G., ZAZULAK B.T., HEWETT T.E., Viscosupplementation for knee osteoarthritis: A systematic review, Clin. Orthop. Relat. Res., 2007, 455, 113–122, DOI: 10.1097/ BLO.0B013E31802F5421.
  • [11] DOMŻALSKI M., MIGLIORE A.A., Review of the Clinical Effectiveness and Safety of Hybrid Cooperative Complexes in Intra-articular Viscosupplementation, Rheumatol. Ther., 2022, 9, 4, 957–974, DOI: 10.1007/s40744-022-00450-z.
  • [12] DRUMEANU A.C., Polyacrylamide – New opportunity in lubrication, J. Balk. Tribol. Assoc., 2012, 18, 3, 485–495.
  • [13] DRUMEANU A.C., Some considerations concerning four-ball machine testing of the polyacrylamide solutions, IOP Conf. Ser.: Mater. Sci. Eng., 2017, 174, 012040, DOI: 10.1088/ 1757-899X/174/1/012040.
  • [14] ERMAKOV S., BELETSKII A., EISMONT O., NIKOLAEV V., Liquid Crystals in Biotribology, Springer, 2016, DOI: 978-3- 319-20349-2.
  • [15] GULSEN A., MERVE G., MELTEM P., Biotribology of Cartilage Wear in Knee and Hip Joints Review of Recent Developments, IOP Conf. Ser.: Mater. Sci. Eng., 2018, 295, 012040, DOI: 10.1088/1757-899X/295/1/012040.
  • [16] HENROTIN Y., RAMAN R., RICHETTE P., BARD H., JEROSCH J., CONROZIER T., CHEVALIER X., MIGLIORE A., Consensus statement on viscosupplementation with hyaluronic acid for the management of osteoarthritis, Semin. Arthritis Rheum., 2015, 45, 2, 140–149, DOI: 10.1016/j.semarthrit.2015.04.011.
  • [17] JAHN S., SEROR J., KLEIN J., Lubrication of Articular Cartilage, Annu. Rev. Biomed. Eng., 2016, 18, 235–258, DOI: 10.1146/annurev-bioeng-081514-123305.
  • [18] JEBENS E.H., MONK-JONES M.E., On the viscosity and pH of synovial fluid and the pH of blood, J. Bone Joint Surg. Br., 1959, 41, 2, 388–400, DOI: 10.1302/0301-620x.41b2.388.
  • [19] KIM Y.S., GUILAK F., Engineering Hyaluronic Acid for the Development of New Treatment Strategies for Osteoarthritis, Int. J. Mol. Sci., 2022, 23, 15, 8662, DOI: 10.3390/ ijms23158662, doi.org/10.3390/ijms23158662.
  • [20] VON LOSPICHL B., HEMMATI-SADEGHI S., DEY P., DEHNE T., HAAG R., SITTINGER M., RINGE J., GRADZIELSKI M., Injectable hydrogels for treatment of osteoarthritis – A rheological study, Colloids Surf. B., 2017, 159, 477–483, DOI: 10.1016/ j.colsurfb.2017.07.073.
  • [21] LU K.H., LU P.W.A., LIN C.W., LU E.W., YANG S.F., Different molecular weights of hyaluronan research in knee osteoarthritis: A state-of-the-art review, Matrix Biol., 2023, 117, 46–71, DOI: 10.1016/j.matbio.2023.02.006.
  • [22] MORE S., KOTIYA A., KOTIA A., GHOSH S.K., SPYROU L.A., SARRIS J.E., Rheological properties of synovial fluid due to viscosupplements: A review for osteoarthritis remedy, Comput. Methods Programs Biomed., 2020 196, 105644, DOI: 10.1016/j.cmpb.2020.105644.
  • [23] ODEHNAL L., RANUŠA M., WIMMER M.A., VRBKA M., KRUPKA I., Development of lubrication film and influence on friction in a total knee replacement during a gait cycle, Tribol. Int., 2023, 178, 108073, DOI: 10.1016/j.triboint.2022.108073.
  • [24] REBENDA D., VRBKA M., ĆÍPEK P., TOROPITSYN E., NEČAS D., PRAVDA M., HARTL M., On the dependence of rheology of hyaluronic acid solutions and frictional behavior of articular cartilage, Materials, 2020, 13, 11, 2659, DOI: 0.3390/ ma13112659.
  • [25] REBENDA D., VRBKA M., NEČAS D., TOROPITSYN E., YARIMITSU S., ĆÍPEK P., PRAVDA M., HARTL M., Rheological and frictional analysis of viscosupplements towards improved lubrication of human joints, Tribol. Intern., 2021, 160, 107030, DOI: 10.1016/j.triboint.2021.107030.
  • [26] RUDGE R.E.D., SCHOLTEN E., DIJKSMAN J.A., Natural and induced surface roughness determine frictional regimes in hydrogel pairs, Tribol. Int., 2020, 141, 105903, DOI: 10.1016/ j.triboint.2019.105903.
  • [27] RUGGIERO A., Milestones in Natural Lubrication of Synovial Joints, Front. Mech. Eng., 2020, 6, 1–6, DOI: 10.3389/ fmech.2020.00052.
  • [28] RUGGIERO A., D’AMATO R., GÓMEZ E., Experimental analysis of tribological behavior of UHMWPE against AISI420C and against TiAl6V4 alloy under dry and lubricated conditions, Tribol. Int., 2015, 92, 154–161, doi.org/10.1016/j.triboint.2015.06.005
  • [29] DOS SANTOS G.C., DI FILIPPO P.A., DA FONSECA L.A., QUIRINO C.R., Effects of a Single Intra-Articular Injection of 2% Lidocaine or 0.5% Bupivacaine on Synovial Fluid Acute Phase Protein Concentrations in Healthy Horses, J. Equine Vet. Sci., 2023, 126, 104286, DOI: 10.1016/ j.jevs.2023.104286.
  • [30] SATO T., BESSHI T., SATO D., TSUTSUI I., Effect of water based lubricants on wear of coated material, Wear 2001, 249, 1–2, 50–55, DOI: 10.1016/S0043-1648(01)00522-1.
  • [31] SIMOU K., JONES S.W., DAVIS E.T., PREECE J., ZHANG Z.J., Rheological and interface adhesive properties of osteoarthritic synovial fluids, Biotribology, 2022, 32, 100227, DOI: 10.1016/j.biotri.2022.100227.
  • [32] SMITH A.M., FLEMING L., WUDEBWE U., BOWEN J., GROVER L.M., Development of a synovial fluid analogue with bio-relevant rheology for wear testing of orthopaedic implants, J. Mech. Behav. Biomed. Mater., 2014, 32, 177–184, DOI: 10.1016/ j.jmbbm.2013.12.009.
  • [33] STAMM J., WEIßELBERG S., BOTH A., FAILLA A.V., NORDHOLT G., BÜTTNER H., LINDER S., AEPFELBACHER M., ROHDE H., Development of an artificial synovial fluid useful for studying Staphylococcus epidermidis joint infections, Front. Cell. Infect. Microbiol., 2022, 12, 1–13, DOI: 10.3389/ fcimb.2022.948151.
  • [34] STUDY M.P., Polyacrylamide Hydrogel Injection for Knee Osteoarthritis: A 6 Months Prospective Study, J. Orthop. Res. Ther., 2021, 6, 2, DOI: 10.29011/2575-8241.001188.
  • [35] TAMER T.M., Hyaluronan and synovial joint: Function, distribution and healing, Interdiscip. Toxicol., 2013, 6, 3, 111–125, DOI: 10.2478/intox-2013-0019.
  • [36] TNIBAR A., Intra-articular 2.5% polyacrylamide hydrogel, a new concept in the medication of equine osteoarthritis: A review, J. Equine Vet. Sci., 2022, 119, 104143, DOI: 10.1016/ j.jevs.2022.104143.
  • [37] USOL’TSEVA N.V., SMIRNOVA A.I., Liquid crystals as lubricants, Lubricants 2019, 7, 12, 111, DOI: 10.3390/ lubricants7120111.
  • [38] VISHWANATH K., MCCLURE S.R., BONASSAR L.J., Polyacrylamide hydrogel lubricates cartilage after biochemical degradation and mechanical injury, J. Orthop. Res., 2023, 41, 1, 63–71, DOI: 10.1002/jor.25340.
  • [39] DE VRIES E.G., VAN MINNEN B.S., WU Y., MATTHEWS D.T.A., VAN DER HEIDE E., Tribological behaviour of a synthetic synovial fluid and polyurethane in biomedical implants, Biotribology, 2023, 33–34, 100242, DOI: 10.1016/ j.biotri.2023.100242.
  • [40] WANG C., BAI X., GUO Z., DONG C., YUAN C., Friction and wear behaviours of polyacrylamide hydrogel microsphere/ UHMWPE composite under water lubrication, Wear, 2021, 477, 203841, DOI: 10.1016/j.wear.2021.203841.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03f6e382-b4db-40d6-951a-7750b05d2f72
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.