PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Implementation of Goertzel-based frequency estimation for power quality monitoring in embedded measurement systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
International standards from IEC and IEEE regulate power grid parameters such as the RMS value, frequency, harmonic and interharmonic distortion, unbalance or the presence of transients, that are important to assure the quality of distributed power. Standard IEC 61000-4-30 suggests the zero crossing algorithm for the measurement of the power grid frequency, but also states that different algorithms can be used. This paper proposes a new algorithm, the Fractional Interpolated Discrete Fourier Transform, FracIpDFT, to estimate the power grid frequency, suitable for implementation in resource limited embedded measurement systems. It is based on the non-integer Goertzel algorithm followed by interpolation at non-integer multiples of the DFT frequency resolution. The proposed algorithm is validated and its performance compared with other algorithms through numerical simulations. Implementation details of the FracIpDFT in an ARM Cortex M4 processor are presented along with frequency measurement results performed with the proposed algorithm in the developed system.
Rocznik
Strony
455--468
Opis fizyczny
Bibliogr. 29 poz., rys., wykr., wzory
Twórcy
  • Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
  • Instituto de Telecomunicações, Universidade de Évora, 7000-671 Évora, Portugal
  • Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
Bibliografia
  • [1] Sorrell, S. (2015). Reducing energy demand: A review of issues, challenges and approaches. Renewable and Sustainable Energy Reviews, 47, 74-82. https://doi.org/10.1016/j.rser.2015.03.002
  • [2] Liang, X. (2017). Emerging power quality challenges due to integration of renewable energy sources. IEEE Transactions on Industry Applications, 53(2), 855-866. https://doi.org/10.1109/TIA.2016.2626253
  • [3] Montoya, F. G., Cruz, A. G., Montoya, M. G., & Agugliaro, F. M. (2016). Power quality techniques research worldwide. A review. Renewable and Sustainable Energy Reviews, 54(2), 846-856. https://doi.org/10.1016/j.rser.2015.10.091
  • [4] Parle, J. A., Madrigal, M., & Acha, E. (2001). Trends in power quality monitoring. IEEE Power Engineering Review, 21(10), 3-21. https://doi.org/10.1109/39.954584
  • [5] Radil, T., Ramos, P. M., Janeiro, F. M., & Serra, A. C. (2008). PQ monitoring system for real-time detection and classification of disturbances in a single-phase power system. IEEE Transactions on Instrumentation and Measurement, 57(8), 1725-1733. https://doi.org/10.1109/TIM.2008.925345
  • [6] Yang, Y., Divan, D. M., Harley, R. G., & Habetler, T. G. (2006). Power line sensornet - A new concept for power grid monitoring. IEEE Power Engineering Society General Meeting. https://doi.org/10.1109/PES.2006.1709566
  • [7] Muscas, C., Pau, M., Pegoraro, P. A., & Sulis, S. (2015). Smart electric energy measurements in power distribution grids. IEEE Instrumentation & Measurement Magazine, 18(1), 17-21. https://doi.org/10.1109/MIM.2015.7016676
  • [8] Velazquez, L. M., Troncoso, R. R., Ruiz, G. H., Sotelo, D. M., & Rios, R. O. (2017). Smart sensor network for power quality monitoring in electrical installations. Measurement, 103, 133-142. https://doi.org/10.1016/j.measurement.2017.02.032
  • [9] Alavi, A. H., Jiao, P., Buttlar, W. G., & Lajnef, N. (2018). Internet of Things-enabled smart cities: State-of-the-art and future trends. Measurement, 129, 589-606. https://doi.org/10.1016/j.measurement.2018.07.067
  • [10] Ribeiro, E. G., Mendes, T. M., Dias, G. L., Faria, E. R. S., Viana, F. M., Barbosa, B. H. G., & Ferreira, D. D. (2018). Real-time system for automatic detection and classification of single and multiple power quality disturbances. Measurement, 128, 276-283. https://doi.org/10.1016/j.measurement.2018.06.059
  • [11] IEC 61000-4-30 (2015). Electromagnetic compatibility (EMC) - part 4-30: Testing and measurement techniques - Power quality measurement methods, Edition 3.0
  • [12] IEC 61000-4-7 (2009). Electromagnetic compatibility (EMC) - part 4-7: Testing and measurement techniques - General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto, Edition 2.1
  • [13] IEEE Std 1159-2009 (2009). IEEE Recommended Practice for Monitoring Electric Power Quality. https://doi.org/10.1109/IEEESTD.2009.5154067
  • [14] Slepička, D., Agrež, D., Lapuh, R., Nunzi, E., Petri, D., Radil, T., Schoukens, J., & Sedláček, M. (2010, May). Comparison of nonparametric frequency estimators. In 2010 IEEE Instrumentation & Measurement Technology Conference Proceedings (pp. 73-77). IEEE. https://doi.org/10.1109/IMTC.2010.5488181
  • [15] Ramos, P. M., & Serra, A. C. (2009). Comparison of frequency estimation algorithms for power quality assessment. Measurement, 42(9), 1312-1317. https://doi.org/10.1016/j.measurement.2008.04.013
  • [16] Renders, H., Schoukens, J., & Vilain, G. (1984). High-accuracy spectrum analysis of sampled discrete frequency signals by analytical leakage compensation. IEEE Transactions on Instrumentation and Measurement, 33(4), 287-292. https://doi.org/10.1109/TIM.1984.4315226
  • [17] Agrež, D. (2007). Dynamics of frequency estimation in the frequency domain. IEEE Transactions on Instrumentation and Measurement, 56(6), 2111-2118. https://doi.org/10.1109/TIM.2007.908240
  • [18] Belega, D., Petri, D., & Dallet, D. (2014). Frequency estimation of a sinusoidal signal via a three-point interpolated DFT method with high image component interference rejection capability. Digital Signal Processing, 24, 162-169. https://doi.org/10.1016/j.dsp.2013.09.014
  • [19] Borkowski, J., Mroczka, J., Matusiak, A., & Kania, D. (2021). Frequency Estimation in Interpolated Discrete Fourier Transform with Generalized Maximum Sidelobe Decay Windows for the Control of Power. IEEE Transactions on Industrial Informatics, 17(3), 1614-1624. https://doi.org/10.1109/TII.2020.2998096
  • [20] Lušin, T., & Agrež, D. (2011). Estimation of the amplitude square using the interpolated discrete Fourier transform. Metrology and Measurement Systems, 18(4), 583-596. https://doi.org/10.2478/v10178-011-0056-6
  • [21] Borkowski, J., & Kania, D. (2016). Interpolated-DFT-based fast and accurate amplitude and phase estimation for the control of power. Metrology and Measurement Systems, 23(1), 13-26. https://doi.org/10.1515/mms-2016-0013
  • [22] Shen, T., Li, H., Zhang, Q., & Li, M. (2017). A novel adaptive frequency estimation algorithm based on interpolation FFT and improved adaptive notch filter. Measurement Science Review, 17(1), 48-52. https://doi.org/10.1515/msr-2017-0006
  • [23] IEEE Std 1057-2017 (Revision of IEEE Std 1057-2007) (2018). IEEE Standard for Digitizing Waveform Recorders. https://doi.org/10.1109/IEEESTD.2018.8291741
  • [24] Augustyn, J., & Kampik, M. (2019). Improved Sine-Fitting Algorithms for Measurements of Complex Ratio of AC Voltages by Asynchronous Sequential Sampling. IEEE Transactions on Instrumentation and Measurement, 68(6), 1659-1665. https://doi.org/10.1109/TIM.2018.2875901
  • [25] Aiello, M., Cataliotti, A., & Nuccio, S. (2005). A Chirp-z transform-based synchronizer for power system measurements. IEEE Transactions on Instrumentation and Measurement, 54(3), 1025-1032. https://doi.org/10.1109/TIM.2005.847243
  • [26] Goertzel, G. (1958). An algorithm for the evaluation of finite trigonometric series. The American Mathematical Monthly, 65, 34-35, Mathematical Association of America. https://doi.org/10.2307/2310304
  • [27] Sysel, P., & Rajmic, P. (2012). Goertzel algorithm generalized to non-integer multiples of fundamental frequency. EURASIP Journal on Advances in Signal Processing. https://doi.org/10.1186/1687-6180-2012-56
  • [28] Kay, S. M. (1993). Fundamentals of statistical signal processing: estimation theory. Prentice-Hall, Inc.
  • [29] IEC 61000-2-2 (2015). Electromagnetic compatibility (EMC) - Part 2-2: Environment - Compatibility levels for low frequency conducted disturbances and signalling in public low-voltage power supply systems, Edition 2.0
Uwagi
1. This work was developed under the PhD program of the Fundação para a Ciência e a Tecnologia (FCT) reference SFRH/BD/130327/2017 and is funded by FCT/MCTES through national funds and, when applicable, co-funded EU funds under the project UIDB/EEA/50008/2020.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03f41ad7-fc4c-4869-bd7d-98baa4609d5c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.