PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Potential of Oil Palm Mesocarp Fiber Waste as a Prebiotic Material – Chemical and Microbial Evaluation Using Probiotic Saccharomyces cerevisiae, Lactobacillus casei and Escherichia coli

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Oil palm mesocarp fiber (OPMF), a biomass waste generated during the production of palm oil is rich in polysaccharides that can be converted to value-added product. The potential of cellulose from OPMF as a prebiotic represents an innovative exploration of biomass waste, which has never been undertaken. This study aims to investigate the effect of supplementation of OPMF in the medium on the growth of probiotic Saccharomyces cerevisiae, Lactobacillus casei and enteropathogenic E. coli, and to ascertain the potential OPMF as prebiotic by quantifying prebiotic activity score (PAS). The research was designed using a Randomized Complete Block Design with a single factor and three replications. The factor was the concentration of OPMF extract added to the growth medium, with seven treatment levels: P0 as control (no addition), P1 (1% glucose), P2 (2% prebiotic inulin), P3 (2% OPMF extract), P4 (4% OPMF extract), P5 (6% OPMF extract), P6 (8% OPMF extract), and P7 (10% OPMF extract) (w/v). The results showed that supplementation of OPMF extract significantly supported the growth of both of probiotics used in this study (p < 0.05) similar to on the prebiotic inulin. The growth of S. cerevisiae was the highest on the 8% OPMF extract, with the PAS value of 1.90. In addition, the growth of L. casei on OPMF extract at the minimal concentration of 6% and on inulin were higher significantly than on glucose, with the PAS in the range of 1.98–2.47. In contrast, the growth of E. coli on the OPMF extract and on inulin were lower than on glucose (p < 0.05). Conclusion, the growth of L. casei on OPMF extract was higher than S. cerevisiae, at a minimal concentration of 6%. Therefore, OPMF extract was potential as prebiotic.
Twórcy
  • Department of Agricultural Product Technology, Faculty of Agriculture, University of Lampung, Jl. Sumantri Brojonegoro No 1, Bandar Lampung, Indonesia 35145
  • Department of Agricultural Product Technology, Faculty of Agriculture, University of Lampung, Jl. Sumantri Brojonegoro No 1, Bandar Lampung, Indonesia 35145
autor
  • Department of Agricultural Product Technology, Faculty of Agriculture, University of Lampung, Jl. Sumantri Brojonegoro No 1, Bandar Lampung, Indonesia 35145
  • Department of Agricultural Product Technology, Faculty of Agriculture, University of Lampung, Jl. Sumantri Brojonegoro No 1, Bandar Lampung, Indonesia 35145
  • Department of Agricultural Product Technology, Faculty of Agriculture, University of Lampung, Jl. Sumantri Brojonegoro No 1, Bandar Lampung, Indonesia 35145
Bibliografia
  • 1. Al-Muraisy, S.A.A., Ali, N., Hassan, O., Sabeen, A.H. 2017. Alkali pretreatment and acid hydrolysis of oil palm mesocarp fiber (OPMF) to produce glucose. Advanced Science Letters, 23(9), 8832–8836. http://dx.doi.org/10.1166/asl.2017.9979
  • 2. Al-Rajabia, M.M, and Haan, T.Y. 2021. Green extraction method of cellulose fibers from oil palm empty fruit bunches (in Indonesian). Jurnal Kejuruteraan, 34(5), 851–860 https://doi.org/10.17576/jkukm-2022-34(5)-12
  • 3. Andari, I.G.A.A.U., I Wayan,A., Anak, A.M.D.A. 2022. The effect of hydrogen peroxide concentration and blanching process time on the characteristics of coconut (Cocos nucfiera L) fiber cellulose (in Indonesian). Jurnal Rekayasa dan Manajemen Agroindustri, 10(3), 237–247. http://dx.doi.org/10.24843/JRMA.2022.v10.i03.p01
  • 4. Aryati, Y., Widanarni, Wahjuningrum, D., Rusmana, I., Lusiastuti, A.M. 2020. Potentials prebiotic of longan, kapok, and organic honey on the growth performance of tilapia (Orechromis niloticus) (in Indonesian). Jurnal Riset Akuakultur, 15(3), 185–193. http://dx.doi.org/10.15578/jra.15.3.2020.185-193
  • 5. Bakar, A. 2009. Determination of arsenic and iron levels in bleached palm fiber flour using HCIO4 and charcoal from palm oil mill waste (in Indonesian). Journal of The Indonesian Society of Integrated Chemistry, 1(1), 27–33. https://doi.org/10.22437/jisic.v1i1.5089
  • 6. Bakar, N.F.A., Rahman, N.Abd., Mahadi, M.B., Zuki, S.A.M., Amin, K.N.M., Wahab, M.Z., Lenggoro, I.W. 2021. Nanocellulose from oil palm mesocarp fiber using hydrothermal treatment with low concentration of oxalic acid. Materials Today: Proceedings, 48(2022), 1899–1904. https://doi.org/10.1016/j.matpr.2021.09.357
  • 7. Chen W.L., Liang J.B., Jahromi M.S., Abdullah N., Ho, Y. W., and Tufarelli, V. 2015. Enzyme treatment enhances release of prebiotic oligosaccharides from palm kernel expeller. BioResources, 10(1), 196–209. http://dx.doi.org/10.15376/biores.10.1.196-209
  • 8. Chin, S.X., Chia, C.H., Zakaria, S. 2013. Production of reducing sugar from oil palm empty fruit bunch (EFB) cellulose fibres via acid hydrolysis. BioResources, 8(1), 447–460. http://dx.doi.org/10.15376/biores.8.1.447-460
  • 9. Corley, R.H.V., and Tinker, P.B. 2015. The oil palm. Wiley Online Library. http://dx.doi.org/10.1002/9781118953297
  • 10. Dhingra, D., Michael, M., Rajput, H., Patil, R.T. 2012. Dietary fibre in foods: a review. Journal of Food Science and Technology, 49(3), 255–266. https://doi.org/10.1007%2Fs13197-011-0365-5
  • 11. Figueroa-gonzález, I., Rodríguez-serrano, G., Gómez-ruiz, L., García-garibay, M., Cruz-guerrero, A. 2019. Prebiotic effect of commercial saccharides on probiotic bacteria isolated from commercial products. Food Science and Technology, 2061(3), 747–753. https://doi.org/10.1590/fst.07318
  • 12. Ghartina, D., and Sukriya, R.L.L. 2019. Tree Crop Estate Statistics of Indonesia 2018-2020. Directorate General of Estate Crops Ministry of Agriculture. Jakarta.
  • 13. Gibson, G.R. and Roberfroid, M.B. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of probiotics. The Journal of Nutrition, 125(2), 1401–1412. https://doi.org/10.1093/jn/125.6.1401
  • 14. Hartanto, S., and Ratnawati. 2010. Synthesis of activated carbon from palm oil shell by chemical activation method (in Indonesian). Jurnal Sains Materi Indonesia, 12(1), 12–16. http://dx.doi.org/10.17146/jsmi.2010.12.1.4588
  • 15. Hau, E.H., The, S.S., Yeo, S.K., Chua, B.L., Mah, S.H. 2022. Transformation of oil palm biomass into value-added components. Reviews in Agricultural Sciences Volume, 10, 36–55. https://doi.org/10.7831/ras.10.0_36
  • 16. Huebner, J., Wehling, R.L., Hutkins, R.W. 2007. Functional activity of commercial prebiotic. International Dairy Journal, 17(7), 770–775. https://doi.org/10.1016/j.idairyj.2006.10.006
  • 17. Juliantoni, J., Mucra, D.A., Febrina, D. 2018. Nutritional properties of oil palm fiber fermented with buffalo’s feces at different level (in Indonesian). Jurnal Peternakan, 15(1), 37–46. http://dx.doi.org/10.24014/jupet.v15i1.4319
  • 18. Kusmiyati, N. 2020. Prebiotics: Healthy Nutrition for the Digestive Tract (in Indonesian). CV Pena Persada. Purwokerto.
  • 19. Liang, Z., Fang, Z., Pai, A., Luo, J., Gan, R., Gao, Y., Zhang, P. 2020. Glycosidically bound aroma precursors in fruits: a comprehensive review. Critical Review of Food Science Nutrition, 62(1), 215–243. https://doi.org/10.1080/10408398.2020.1813684
  • 20. Marvie, I., Sitangang, A.B., Budijanto, S. 2022. Cellobiose production from cassava peel hydrolysis and prebiotic activity test on Lactobacillus plantarum (in Indonesian). agriTECH, 42(3), 231–241. https://doi.org/10.22146/agritech.58013
  • 21. Megashah, L.N., Ariffin, H., Zakaria, M.R., Hassan, M.A. 2018. Properties of cellulose extract from different types of oil palm biomass. IOP Conference Series: Materials Science and Engineering 368, 012049. http://dx.doi.org/10.1088/1757-899X/368/1/012049
  • 22. Metzler, B., Bauer, E., Mosenthin, R. 2005. Microflora Management in the Gastrointestinal Tract of Piglets. International Symposium on Recent Advances in Animal Nutrition during the 11th Animal Sciences Congress, Asian-Australasian Association of Animal Production Societies held in Kuala Lumpur, Malaysia (September 5–9th, 2004).
  • 23. Moongngarm, A., Trachoo, N., Sirigungwan, N. 2011. Low molecular weight carbohydrates, prebiotic content, and prebiotic activity of selected food plants in Thailand. Advance Journal of Food Science and Technology, 3(4), 269–274.
  • 24. Nazir, M.S., Wahjoedi, B.A., Yussof, A.W., Abdullah, M.A. 2013. Eco-friendly extraction and characterization of cellulose from oil palm empty fruit bunches. BioResources, 8(2), 2161–2172. https://doi.org/10.15376/biores.8.2.2161-2172
  • 25. Novianto, E.D., Monica, S.I.P., Suwasdi., Mursilati, M., Purnomo, S.B. 2020. Utilization of peanut agroindustrial waste as a growth media for probiotic bacteria Lactobacillus bulgaricus (in Indonesian). Jurnal Teknologi Pertanian, 9(1), 35–41. https://doi.org/10.30598/jagritekno.2020.9.1.35
  • 26. Pato, U., Ayu, D.F., Riftyani, E., Restuhadi, F., Pawenang, W.T., Firdaus, R., Rahma, A., Surono, I.S., Jaswir, I. 2021. Physicochemical property of oil palm leaves and utilization of cellulose microfiber as probiotic encapsulant. Biodiverstas, 22(7), 2937– 2944. https://doi.org/10.13057/biodiv/d220746
  • 27. Phirom-on, K., and Apiraksakorn, J. 2021. Development of cellulose-based prebiotic fiber from banana peel by enzymatic hydrolysis. Food Bioscience, 41, 101083. https://doi.org/10.1016/j.fbio.2021.101083
  • 28. Raharja, S., Imam, P., Fitria, Y. 2004. Extraction and analysis of dietary fiber from mengkudu fruit (Morinda citrifolia). Jurnal Teknologi Industri Pertanian, 14(1), 30–39.
  • 29. Roberfroid, M.B. 2007. Inulin-type fructans: Functional food ingredients. Journal of Nutrition, 137(11), 2493–2502. https://doi.org/10.1093/jn/137.11.2493S
  • 30. Sembiring, H.T., Bimantio, M.P., Widyowanti, R.A. 2023. The use of oil palm mesocarp serat as a substitute for synthetic serat in the manufacture of fiberglass composites. J. Pen. Kelapa Sawit, 31(2), 70–81.
  • 31. Sulistijani, D.A. 2001. Healthy with Fiber Diet (in Indonesian). Trubus Agriwidya. Jakarta.
  • 32. Sundalian, M., Larissa, D., Suprijana, O. 2021. Contents and utilization of palm oil fruit waste. Biointerface Research in Applied Chemistry, 11(3), 10148–10160. http://dx.doi.org/10.33263/BRIAC113.1014810160
  • 33. Supriatna, J., Setiawati, M.R., Sudirja, R., Suherman, C., Bonneau, X. 2022. Composting for a more sustainable palm oil waste management: a systematic literature review. Scientific World Journal, 5073059. http://dx.doi.org/10.1155/2022/5073059
  • 34. Zhang, P., Zhang, R., Sirisena, S., Gan, R, Fang, Z. 2021. Beta-glucosidase activity of wine yeasts and its impacts on wine volatiles and phenolics: A minireview. Food Microbiology, 100, 103859. https://doi.org/10.1016/j.fm.2021.103859
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03e8cea0-488f-446d-8db0-0b17acbfe7ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.