PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the Energy Capacity of the Controlled Landfill from Mohamedia Benslimane by Three Theoretical Methods – Land Gem, IPCC, and TNO

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this study was to estimate the content of methane produced and generated by the anaerobic biodegradation of the main organic fraction of municipal solid waste from the controlled landfill of Mohammedia-Benslimane (Morocco) by three theoretical models, based on the first order decay equation: LandGEM, IPCC and TNO. To carry out this study, the quantities of solid waste buried in this landfill since its inauguration in 2012 were used and the composition of the biogas in-situ in 2020 and 2021was determined. The quantities of waste that will be buried in this landfill from 2022 to 2032 were estimated by projection.The results of the analysis of the biogas generated in this controlled landfill in 2020–2021 indicate that it is composed of 59.59% CH4, 38.9% CO2, and 0.14% O2. This result indicates that the waste is in a stable methanogenesis phase. The results obtained by using the three methodologies show that the total volume of CH4 generated during the period 2012–2021 was 32.59 Mm3 according to the IPCC model, 20.95 Mm3 according to the LandGEM model and 20.96 Mm3 according to the TNO model. The total volume of CH4 that will be produced during the period 2022–2032 has been projected to 107.48 Mm3 by the IPCC model, to 76.84 Mm3 by the LandGEM model, while the total volume of CH4 projected under the TNO method will be 67.67 Mm3. The maximum methane production will reach a value of 12.07 Mm3, 9.46 Mm3 and 7.82 Mm3 for the IPCC, LandGEM and TNO models, respectively. In 2021, the volume of methane estimated by the three models is higher than that on-site measurement by a factor of 3.5(IPCC), 2.4 (LandGEM) and 2.3 (TNO). The results clearly indicate that the three models over predict methane generations when compared to the on-site generations. According to the LandGEM methodology, the electricity estimated will reach a maximum value of 33 GWh/year in 2032.The efficient use of methane generated by this controlled landfill as a source of electrical energy in the upcoming years can be an option for the sustainable management of waste.
Rocznik
Strony
19--30
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Laboratory of Radiation-Material and Instrumentation, Faculty of Science and Technology of Settat, Hassan First University of Settat, Km 3.5, Road to Casablanca, 26000, Settat, Morocco
  • Laboratory of Radiation-Material and Instrumentation, Faculty of Science and Technology of Settat, Hassan First University of Settat, Km 3.5, Road to Casablanca, 26000, Settat, Morocco
Bibliografia
  • 1. Atabi F., Ali Ehyaei M., Ahmadi M.H. 2014. Calculation of CH4 and CO2 Emission Rate in kahrizak landfill site with Land GEM mathematical model. World Sustainability Forum 2014 – Conference Proceedings Paper, 1–17.
  • 2. Ayodele TR., Ogunjuyigbe ASO., Alao MA. 2017. Life cycle assessment of waste-to-energy (WtE) technologies for electricity generation using municipal solid waste in Nigeria. Applied Energy, 201, 200-218.
  • 3. Cudjoe D., Han M.S. 2021. Economic feasibility and environmental impact analysis of landfill gas to energy technology in African urban areas. Journal of Cleaner Production, 284, 125437.
  • 4. Duan Z., Scheutz C., Kjeldsen P. 2021. Trace gas emissions from municipal solid waste landfills: A review. Waste Management, 119, 39–62.
  • 5. El-Ajraoui J., Douch J., Hamdani M. 2019. Characterization of the technical landfill biogas of the Greater Agadir (Morocco) and its thermal valorization for the treatment of leachates by forced evaporation (in french). Environmental and Water Sciences, public Health and Territorial Intelligence Journal, 3(3), 160–169.
  • 6. EPA USA. 2008. Background Information Document for Updating AP42 Section 2.4 for Estimating Emissions from Municipal Solid Waste Landfills. U.S. Environmental Protection Agency, Washington, D.C., EPA/600/R-08/116,.
  • 7. Ghosh P., Shah G., Chandra R., Sahota S., Kumar H., Vijay V.K., Thakur I.S. 2019. Assessment of methane emissions and energy recovery potential from the municipal solid waste landfills of Delhi, India. Bioresource Technology, 272, 611–615.
  • 8. Intergovernmental Panel on Climate Change, 2006. IPCC Guidelines for National Greenhouse Gas Inventories: Vol. 5 Chapter 3 Solid Waste Disposal. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, 4, 6.1– 6.49.
  • 9. Kale C., Gökçek M. 2020. A techno-economic assessment of landfill gas emissions and energy recovery potential of different landfill areas in Turkey. Journal of Cleaner Production, 275.
  • 10. Kim K.H., Choi Y., Jeon E., Sunwoo Y. 2005. Characterization of malodorous sulfur compounds in landfill gas. Atmospheric Environment, 39(6), 1103–1112.
  • 11. Ko J.H., Xu Q., Jang Y.C. 2015. Emissions and Control of Hydrogen Sulfide at Landfills: A Review. Critical Reviews in Environmental Science and Technology, 45(19), 2043–2083.
  • 12. Krause M.J., Chickering G.W., Townsend T.G. 2016. Translating landfill methane generation parameters among first-order decay models. Journal of the Air & Waste Management Association, 66(11), 1084–1097.
  • 13. Kumar A., Sharma M.P. 2014. Estimation of GHG emission and energy recovery potential from MSW landfill sites. Sustainable Energy Technologies and Assessments, 5, 50–61.
  • 14. Kumar A., Samadder S.R. 2017. A review on technological options of waste to energy for effective management of municipal solid waste. Waste Management, 69, 407–422.
  • 15. Mavridis S., Voudrias E.A. 2021. Using biogas from municipal solid waste for energy production: Comparison between anaerobic digestion and sanitary landfilling. Energy Conversion and Management, 247, 114613.
  • 16. Noor Z.Z., Yusuf R.O., Abba A.H., Abu Hassan M.A., Mohd Din M.F. 2013. An overview for energy recovery from municipal solid wastes (MSW) in Malaysia scenario. Renewable and Sustainable Energy Reviews, 20, 378–384.
  • 17. Oukili A.I., Mouloudi M., Chhiba M. 2022. Land-GEM biogas estimation, energy potential and carbon footprint assessments of a controlled landfill site. Case of the controlled landfill of Mohammedia-Benslimane, Morocco. Journal of Ecological Engineering, 23(3), 116–129.
  • 18. Pillai J., Riverol C. 2018. Estimation of gas emission and derived electrical power generation from landfills. Trinidad and Tobago as study case. ustainable Energy Technologies and Assessments, 29, 139–146.
  • 19. Plocoste T., Jacoby Koaly S. 2016. Estimation of methane emission from a waste dome in a tropical insular area. International Journal of Waste Resources, 6(2), 1–7.
  • 20. Saghir M., El Mahi Chbihi M., Tahiri M., Naimi Y. 2018. Estimated production of electrical energy for the controlled landfill in Fez (Morocco) by the Land-GEM model of US EPA. American Journal of Earth Science and Engineering, 1(2), 137–142.
  • 21. Williams P.T. 2005. Waste treatement and disposal. John Wiley & Sons, Hoboken.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-03e8b379-6b0d-438c-9626-acd450952547
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.